Properties

Label 2-25410-1.1-c1-0-27
Degree $2$
Conductor $25410$
Sign $1$
Analytic cond. $202.899$
Root an. cond. $14.2442$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 7-s + 8-s + 9-s − 10-s − 12-s + 3·13-s + 14-s + 15-s + 16-s − 2·17-s + 18-s − 20-s − 21-s + 9·23-s − 24-s + 25-s + 3·26-s − 27-s + 28-s + 9·29-s + 30-s + 7·31-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s + 0.832·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.485·17-s + 0.235·18-s − 0.223·20-s − 0.218·21-s + 1.87·23-s − 0.204·24-s + 1/5·25-s + 0.588·26-s − 0.192·27-s + 0.188·28-s + 1.67·29-s + 0.182·30-s + 1.25·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25410\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(202.899\)
Root analytic conductor: \(14.2442\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 25410,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.711333120\)
\(L(\frac12)\) \(\approx\) \(3.711333120\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 \)
good13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.36008785497301, −14.86247161698594, −14.26847357848699, −13.68684159307865, −13.15810997380616, −12.70603226558765, −12.07845040480493, −11.56876097781609, −11.16395306571461, −10.62230613791833, −10.21389709191914, −9.191130464013425, −8.743474690770435, −8.055849825427975, −7.412292305995513, −6.835648070620310, −6.256258636611941, −5.753587787314878, −4.915510354356531, −4.503461889335524, −4.007336876221451, −2.999481253276337, −2.584968713287886, −1.308867844929669, −0.8031979061492657, 0.8031979061492657, 1.308867844929669, 2.584968713287886, 2.999481253276337, 4.007336876221451, 4.503461889335524, 4.915510354356531, 5.753587787314878, 6.256258636611941, 6.835648070620310, 7.412292305995513, 8.055849825427975, 8.743474690770435, 9.191130464013425, 10.21389709191914, 10.62230613791833, 11.16395306571461, 11.56876097781609, 12.07845040480493, 12.70603226558765, 13.15810997380616, 13.68684159307865, 14.26847357848699, 14.86247161698594, 15.36008785497301

Graph of the $Z$-function along the critical line