Properties

Label 2-25350-1.1-c1-0-34
Degree $2$
Conductor $25350$
Sign $-1$
Analytic cond. $202.420$
Root an. cond. $14.2274$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 2·7-s − 8-s + 9-s − 3·11-s − 12-s + 2·14-s + 16-s − 18-s + 8·19-s + 2·21-s + 3·22-s − 9·23-s + 24-s − 27-s − 2·28-s + 6·29-s − 4·31-s − 32-s + 3·33-s + 36-s − 11·37-s − 8·38-s − 2·42-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.904·11-s − 0.288·12-s + 0.534·14-s + 1/4·16-s − 0.235·18-s + 1.83·19-s + 0.436·21-s + 0.639·22-s − 1.87·23-s + 0.204·24-s − 0.192·27-s − 0.377·28-s + 1.11·29-s − 0.718·31-s − 0.176·32-s + 0.522·33-s + 1/6·36-s − 1.80·37-s − 1.29·38-s − 0.308·42-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(202.420\)
Root analytic conductor: \(14.2274\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 25350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.80259823579983, −15.55694405851207, −14.51415974245030, −13.90400634353483, −13.59190197700787, −12.69185339301141, −12.29526741231881, −11.88443546208147, −11.23873095696631, −10.54923842185900, −10.15341457161312, −9.768109049336156, −9.106692585628778, −8.483578180390737, −7.726339694534368, −7.354260970491779, −6.776039821812034, −5.907277324467968, −5.678082263499283, −4.927426649077754, −4.018998630426781, −3.300953152625762, −2.625905540704519, −1.783895868359487, −0.8100856685843732, 0, 0.8100856685843732, 1.783895868359487, 2.625905540704519, 3.300953152625762, 4.018998630426781, 4.927426649077754, 5.678082263499283, 5.907277324467968, 6.776039821812034, 7.354260970491779, 7.726339694534368, 8.483578180390737, 9.106692585628778, 9.768109049336156, 10.15341457161312, 10.54923842185900, 11.23873095696631, 11.88443546208147, 12.29526741231881, 12.69185339301141, 13.59190197700787, 13.90400634353483, 14.51415974245030, 15.55694405851207, 15.80259823579983

Graph of the $Z$-function along the critical line