Properties

Label 2-252e2-1.1-c1-0-4
Degree $2$
Conductor $63504$
Sign $1$
Analytic cond. $507.081$
Root an. cond. $22.5184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·11-s − 2·13-s − 7·19-s + 3·23-s − 4·25-s + 8·29-s + 4·31-s − 6·37-s − 12·41-s + 8·43-s + 8·47-s − 4·53-s − 2·55-s − 4·59-s − 13·61-s − 2·65-s + 2·67-s − 5·71-s + 14·73-s + 11·79-s − 12·83-s + 14·89-s − 7·95-s + 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.603·11-s − 0.554·13-s − 1.60·19-s + 0.625·23-s − 4/5·25-s + 1.48·29-s + 0.718·31-s − 0.986·37-s − 1.87·41-s + 1.21·43-s + 1.16·47-s − 0.549·53-s − 0.269·55-s − 0.520·59-s − 1.66·61-s − 0.248·65-s + 0.244·67-s − 0.593·71-s + 1.63·73-s + 1.23·79-s − 1.31·83-s + 1.48·89-s − 0.718·95-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63504\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(507.081\)
Root analytic conductor: \(22.5184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 63504,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.480052016\)
\(L(\frac12)\) \(\approx\) \(1.480052016\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.07399276070566, −13.77730966891883, −13.35771205343368, −12.63738531802522, −12.29078147683022, −11.91080272828329, −11.03408650906852, −10.64869479314351, −10.22189812792750, −9.771069009065454, −9.054172418539788, −8.618333881097759, −8.104924189694824, −7.505674861172631, −6.916262111861500, −6.280212382799094, −5.995570777805458, −4.994027262406106, −4.872147459714783, −4.092339672174537, −3.353566189124304, −2.606937899136915, −2.190208213309803, −1.407196963344600, −0.4018848851601407, 0.4018848851601407, 1.407196963344600, 2.190208213309803, 2.606937899136915, 3.353566189124304, 4.092339672174537, 4.872147459714783, 4.994027262406106, 5.995570777805458, 6.280212382799094, 6.916262111861500, 7.505674861172631, 8.104924189694824, 8.618333881097759, 9.054172418539788, 9.771069009065454, 10.22189812792750, 10.64869479314351, 11.03408650906852, 11.91080272828329, 12.29078147683022, 12.63738531802522, 13.35771205343368, 13.77730966891883, 14.07399276070566

Graph of the $Z$-function along the critical line