Properties

Label 2-252e2-1.1-c1-0-39
Degree $2$
Conductor $63504$
Sign $-1$
Analytic cond. $507.081$
Root an. cond. $22.5184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 11-s + 6·13-s + 5·17-s − 7·19-s − 4·23-s − 25-s − 4·29-s − 6·31-s + 2·37-s − 3·41-s + 43-s + 12·53-s + 2·55-s − 7·59-s + 12·61-s − 12·65-s − 13·67-s + 8·71-s − 73-s + 6·79-s + 16·83-s − 10·85-s + 6·89-s + 14·95-s + 5·97-s + 101-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.301·11-s + 1.66·13-s + 1.21·17-s − 1.60·19-s − 0.834·23-s − 1/5·25-s − 0.742·29-s − 1.07·31-s + 0.328·37-s − 0.468·41-s + 0.152·43-s + 1.64·53-s + 0.269·55-s − 0.911·59-s + 1.53·61-s − 1.48·65-s − 1.58·67-s + 0.949·71-s − 0.117·73-s + 0.675·79-s + 1.75·83-s − 1.08·85-s + 0.635·89-s + 1.43·95-s + 0.507·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63504\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(507.081\)
Root analytic conductor: \(22.5184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 63504,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.70442383463072, −13.94097062437263, −13.44425389078217, −13.00729836918579, −12.46249096847408, −11.98064520586613, −11.42257414992319, −11.03614880510397, −10.41625493522676, −10.15941063092907, −9.211126788235655, −8.817511333296212, −8.252114529017717, −7.804736601211768, −7.431588226632852, −6.575972948459634, −6.105059405883603, −5.617220073530686, −4.946506441935722, −4.022415960739349, −3.825567231284924, −3.361021352787522, −2.339053847427406, −1.725688685518272, −0.8394139306323873, 0, 0.8394139306323873, 1.725688685518272, 2.339053847427406, 3.361021352787522, 3.825567231284924, 4.022415960739349, 4.946506441935722, 5.617220073530686, 6.105059405883603, 6.575972948459634, 7.431588226632852, 7.804736601211768, 8.252114529017717, 8.817511333296212, 9.211126788235655, 10.15941063092907, 10.41625493522676, 11.03614880510397, 11.42257414992319, 11.98064520586613, 12.46249096847408, 13.00729836918579, 13.44425389078217, 13.94097062437263, 14.70442383463072

Graph of the $Z$-function along the critical line