Properties

Label 2-252e2-1.1-c1-0-38
Degree $2$
Conductor $63504$
Sign $1$
Analytic cond. $507.081$
Root an. cond. $22.5184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 3·11-s − 13-s + 3·17-s + 7·19-s + 9·23-s + 4·25-s + 3·29-s − 8·31-s − 37-s + 3·41-s + 43-s + 3·53-s + 9·55-s + 2·61-s − 3·65-s + 4·67-s − 12·71-s + 11·73-s + 16·79-s + 9·83-s + 9·85-s + 3·89-s + 21·95-s − 97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 1.34·5-s + 0.904·11-s − 0.277·13-s + 0.727·17-s + 1.60·19-s + 1.87·23-s + 4/5·25-s + 0.557·29-s − 1.43·31-s − 0.164·37-s + 0.468·41-s + 0.152·43-s + 0.412·53-s + 1.21·55-s + 0.256·61-s − 0.372·65-s + 0.488·67-s − 1.42·71-s + 1.28·73-s + 1.80·79-s + 0.987·83-s + 0.976·85-s + 0.317·89-s + 2.15·95-s − 0.101·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63504\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(507.081\)
Root analytic conductor: \(22.5184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 63504,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.809149092\)
\(L(\frac12)\) \(\approx\) \(4.809149092\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.23865942286583, −13.71553362136916, −13.40158176451429, −12.72776054092786, −12.33604354913618, −11.70522533575141, −11.24094552865418, −10.60184288713310, −10.13944054541166, −9.530737226959817, −9.128792342045044, −9.002755762644666, −7.931694761599788, −7.476476667121714, −6.824856224957609, −6.467103844253974, −5.681989748442133, −5.283170646410651, −4.933909318214639, −3.934122002261135, −3.328537499715393, −2.764043395208693, −2.009885023420562, −1.278996216804612, −0.8326078699526954, 0.8326078699526954, 1.278996216804612, 2.009885023420562, 2.764043395208693, 3.328537499715393, 3.934122002261135, 4.933909318214639, 5.283170646410651, 5.681989748442133, 6.467103844253974, 6.824856224957609, 7.476476667121714, 7.931694761599788, 9.002755762644666, 9.128792342045044, 9.530737226959817, 10.13944054541166, 10.60184288713310, 11.24094552865418, 11.70522533575141, 12.33604354913618, 12.72776054092786, 13.40158176451429, 13.71553362136916, 14.23865942286583

Graph of the $Z$-function along the critical line