Properties

Label 2-249900-1.1-c1-0-112
Degree $2$
Conductor $249900$
Sign $-1$
Analytic cond. $1995.46$
Root an. cond. $44.6705$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 6·13-s + 17-s − 6·19-s + 2·23-s + 27-s + 2·29-s + 8·31-s − 4·37-s + 6·39-s − 10·41-s − 6·43-s − 8·47-s + 51-s + 12·53-s − 6·57-s − 4·59-s + 4·61-s − 10·67-s + 2·69-s + 6·73-s − 8·79-s + 81-s − 12·83-s + 2·87-s + 8·93-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 1.66·13-s + 0.242·17-s − 1.37·19-s + 0.417·23-s + 0.192·27-s + 0.371·29-s + 1.43·31-s − 0.657·37-s + 0.960·39-s − 1.56·41-s − 0.914·43-s − 1.16·47-s + 0.140·51-s + 1.64·53-s − 0.794·57-s − 0.520·59-s + 0.512·61-s − 1.22·67-s + 0.240·69-s + 0.702·73-s − 0.900·79-s + 1/9·81-s − 1.31·83-s + 0.214·87-s + 0.829·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 249900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 249900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(249900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1995.46\)
Root analytic conductor: \(44.6705\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 249900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.16855002282605, −12.79897067235517, −12.09488517154754, −11.72520036003372, −11.28025295611513, −10.60407366424359, −10.35015756839532, −9.948964084603428, −9.265395702413227, −8.669554476025502, −8.402845946125658, −8.266560743184651, −7.460242992573775, −6.775593189759972, −6.576472467354664, −6.029529872635516, −5.446888810394642, −4.768156968703732, −4.347757801218458, −3.729696125534361, −3.298475465939277, −2.802157869821159, −2.031339101555833, −1.521427467498394, −0.9375375881356506, 0, 0.9375375881356506, 1.521427467498394, 2.031339101555833, 2.802157869821159, 3.298475465939277, 3.729696125534361, 4.347757801218458, 4.768156968703732, 5.446888810394642, 6.029529872635516, 6.576472467354664, 6.775593189759972, 7.460242992573775, 8.266560743184651, 8.402845946125658, 8.669554476025502, 9.265395702413227, 9.948964084603428, 10.35015756839532, 10.60407366424359, 11.28025295611513, 11.72520036003372, 12.09488517154754, 12.79897067235517, 13.16855002282605

Graph of the $Z$-function along the critical line