Properties

Label 2-249900-1.1-c1-0-105
Degree $2$
Conductor $249900$
Sign $-1$
Analytic cond. $1995.46$
Root an. cond. $44.6705$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 5·11-s − 2·13-s − 17-s + 4·19-s + 7·23-s + 27-s + 6·29-s + 5·31-s − 5·33-s − 2·39-s + 10·41-s − 12·43-s + 7·47-s − 51-s + 4·53-s + 4·57-s + 9·59-s + 3·61-s − 11·67-s + 7·69-s + 7·71-s − 11·73-s − 10·79-s + 81-s + 5·83-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 1.50·11-s − 0.554·13-s − 0.242·17-s + 0.917·19-s + 1.45·23-s + 0.192·27-s + 1.11·29-s + 0.898·31-s − 0.870·33-s − 0.320·39-s + 1.56·41-s − 1.82·43-s + 1.02·47-s − 0.140·51-s + 0.549·53-s + 0.529·57-s + 1.17·59-s + 0.384·61-s − 1.34·67-s + 0.842·69-s + 0.830·71-s − 1.28·73-s − 1.12·79-s + 1/9·81-s + 0.548·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 249900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 249900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(249900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1995.46\)
Root analytic conductor: \(44.6705\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 249900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.19590738452567, −12.76037414795242, −12.07605589381600, −11.88523676849333, −11.14488097243302, −10.66875067270346, −10.35371311673650, −9.680327211861100, −9.573471524941537, −8.734027825985932, −8.438399583726222, −7.971597498973539, −7.434528703809707, −7.029911978206057, −6.656544673216869, −5.743050027618317, −5.426505693160672, −4.834146675430724, −4.491891500356552, −3.789974237242598, −2.985049492090682, −2.742939966525233, −2.401218277252952, −1.405078236324249, −0.8689420130392929, 0, 0.8689420130392929, 1.405078236324249, 2.401218277252952, 2.742939966525233, 2.985049492090682, 3.789974237242598, 4.491891500356552, 4.834146675430724, 5.426505693160672, 5.743050027618317, 6.656544673216869, 7.029911978206057, 7.434528703809707, 7.971597498973539, 8.438399583726222, 8.734027825985932, 9.573471524941537, 9.680327211861100, 10.35371311673650, 10.66875067270346, 11.14488097243302, 11.88523676849333, 12.07605589381600, 12.76037414795242, 13.19590738452567

Graph of the $Z$-function along the critical line