Properties

Label 2-248430-1.1-c1-0-137
Degree $2$
Conductor $248430$
Sign $1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 8-s + 9-s + 10-s + 3·11-s + 12-s + 15-s + 16-s + 3·17-s + 18-s − 2·19-s + 20-s + 3·22-s + 9·23-s + 24-s + 25-s + 27-s − 6·29-s + 30-s + 4·31-s + 32-s + 3·33-s + 3·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.904·11-s + 0.288·12-s + 0.258·15-s + 1/4·16-s + 0.727·17-s + 0.235·18-s − 0.458·19-s + 0.223·20-s + 0.639·22-s + 1.87·23-s + 0.204·24-s + 1/5·25-s + 0.192·27-s − 1.11·29-s + 0.182·30-s + 0.718·31-s + 0.176·32-s + 0.522·33-s + 0.514·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(8.760224553\)
\(L(\frac12)\) \(\approx\) \(8.760224553\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.97177951434705, −12.58764719445715, −11.94304926683683, −11.56512149423447, −11.08046167741329, −10.62829538180429, −9.855727067706813, −9.819082638096458, −9.041841802761879, −8.723904473651969, −8.227329437154043, −7.535292511399504, −7.125238034713062, −6.644819047261208, −6.271635595314986, −5.536248009393384, −5.199630147284670, −4.631283565660706, −3.978249446841416, −3.621928053889961, −2.996251055766996, −2.560302400126651, −1.848462359504109, −1.324421023121998, −0.7008765261152128, 0.7008765261152128, 1.324421023121998, 1.848462359504109, 2.560302400126651, 2.996251055766996, 3.621928053889961, 3.978249446841416, 4.631283565660706, 5.199630147284670, 5.536248009393384, 6.271635595314986, 6.644819047261208, 7.125238034713062, 7.535292511399504, 8.227329437154043, 8.723904473651969, 9.041841802761879, 9.819082638096458, 9.855727067706813, 10.62829538180429, 11.08046167741329, 11.56512149423447, 11.94304926683683, 12.58764719445715, 12.97177951434705

Graph of the $Z$-function along the critical line