Properties

Label 2-248430-1.1-c1-0-115
Degree $2$
Conductor $248430$
Sign $1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 8-s + 9-s + 10-s + 12-s + 15-s + 16-s − 3·17-s + 18-s + 19-s + 20-s + 24-s + 25-s + 27-s + 6·29-s + 30-s − 2·31-s + 32-s − 3·34-s + 36-s + 10·37-s + 38-s + 40-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s + 0.258·15-s + 1/4·16-s − 0.727·17-s + 0.235·18-s + 0.229·19-s + 0.223·20-s + 0.204·24-s + 1/5·25-s + 0.192·27-s + 1.11·29-s + 0.182·30-s − 0.359·31-s + 0.176·32-s − 0.514·34-s + 1/6·36-s + 1.64·37-s + 0.162·38-s + 0.158·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.677597991\)
\(L(\frac12)\) \(\approx\) \(7.677597991\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99997456711529, −12.55289278610959, −12.00171021622397, −11.52181170871711, −11.09911680815831, −10.48301292831623, −10.18318602179962, −9.551463365734909, −9.208964983168755, −8.574762399426557, −8.230521471174606, −7.615761527708651, −7.102067094687956, −6.664523305377065, −6.199261147297358, −5.626674074485523, −5.148351082057565, −4.564346219085860, −4.108822693955475, −3.608638703333051, −2.941163635296493, −2.388322354787284, −2.134971125868042, −1.222947788146643, −0.6628911809894992, 0.6628911809894992, 1.222947788146643, 2.134971125868042, 2.388322354787284, 2.941163635296493, 3.608638703333051, 4.108822693955475, 4.564346219085860, 5.148351082057565, 5.626674074485523, 6.199261147297358, 6.664523305377065, 7.102067094687956, 7.615761527708651, 8.230521471174606, 8.574762399426557, 9.208964983168755, 9.551463365734909, 10.18318602179962, 10.48301292831623, 11.09911680815831, 11.52181170871711, 12.00171021622397, 12.55289278610959, 12.99997456711529

Graph of the $Z$-function along the critical line