Properties

Label 2-244608-1.1-c1-0-126
Degree $2$
Conductor $244608$
Sign $-1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s + 9-s − 11-s − 13-s + 3·15-s + 3·17-s − 19-s − 5·23-s + 4·25-s + 27-s − 3·29-s − 2·31-s − 33-s − 5·37-s − 39-s + 10·41-s − 5·43-s + 3·45-s + 3·51-s − 2·53-s − 3·55-s − 57-s + 3·61-s − 3·65-s − 8·67-s − 5·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s + 1/3·9-s − 0.301·11-s − 0.277·13-s + 0.774·15-s + 0.727·17-s − 0.229·19-s − 1.04·23-s + 4/5·25-s + 0.192·27-s − 0.557·29-s − 0.359·31-s − 0.174·33-s − 0.821·37-s − 0.160·39-s + 1.56·41-s − 0.762·43-s + 0.447·45-s + 0.420·51-s − 0.274·53-s − 0.404·55-s − 0.132·57-s + 0.384·61-s − 0.372·65-s − 0.977·67-s − 0.601·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12438704643555, −12.70181345110583, −12.36764643967250, −11.78986916809055, −11.16187618953318, −10.63714622576882, −10.21715092773453, −9.788182422614231, −9.472643614391546, −9.020939598566435, −8.431308017118872, −7.966828744836664, −7.498836948631337, −6.976202306077478, −6.387806557612826, −5.867062496277848, −5.548964269515064, −4.976441690588132, −4.399220781289693, −3.711389908351128, −3.264911668732717, −2.535454707421533, −2.114952259961356, −1.686053297865296, −0.9614594301017618, 0, 0.9614594301017618, 1.686053297865296, 2.114952259961356, 2.535454707421533, 3.264911668732717, 3.711389908351128, 4.399220781289693, 4.976441690588132, 5.548964269515064, 5.867062496277848, 6.387806557612826, 6.976202306077478, 7.498836948631337, 7.966828744836664, 8.431308017118872, 9.020939598566435, 9.472643614391546, 9.788182422614231, 10.21715092773453, 10.63714622576882, 11.16187618953318, 11.78986916809055, 12.36764643967250, 12.70181345110583, 13.12438704643555

Graph of the $Z$-function along the critical line