Properties

Label 2-2400-1.1-c1-0-12
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $19.1640$
Root an. cond. $4.37768$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s − 13-s − 3·19-s + 21-s + 4·23-s + 27-s + 4·29-s + 7·31-s + 6·37-s − 39-s + 6·41-s + 9·43-s + 6·47-s − 6·49-s − 2·53-s − 3·57-s − 10·59-s − 61-s + 63-s − 3·67-s + 4·69-s + 14·71-s − 10·73-s − 8·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.277·13-s − 0.688·19-s + 0.218·21-s + 0.834·23-s + 0.192·27-s + 0.742·29-s + 1.25·31-s + 0.986·37-s − 0.160·39-s + 0.937·41-s + 1.37·43-s + 0.875·47-s − 6/7·49-s − 0.274·53-s − 0.397·57-s − 1.30·59-s − 0.128·61-s + 0.125·63-s − 0.366·67-s + 0.481·69-s + 1.66·71-s − 1.17·73-s − 0.900·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(19.1640\)
Root analytic conductor: \(4.37768\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.390498685\)
\(L(\frac12)\) \(\approx\) \(2.390498685\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.986155872486398060955603454763, −8.138501938134350597335270637884, −7.61828348489898808289572591891, −6.68972285169098883459856444849, −5.92670201782955621143741934900, −4.77570500564148489314113812399, −4.24934920015302837146107605263, −3.04181470663783301255187706870, −2.29786134105577408045110307178, −1.00597629118782045123347487856, 1.00597629118782045123347487856, 2.29786134105577408045110307178, 3.04181470663783301255187706870, 4.24934920015302837146107605263, 4.77570500564148489314113812399, 5.92670201782955621143741934900, 6.68972285169098883459856444849, 7.61828348489898808289572591891, 8.138501938134350597335270637884, 8.986155872486398060955603454763

Graph of the $Z$-function along the critical line