Properties

Label 2-235200-1.1-c1-0-141
Degree $2$
Conductor $235200$
Sign $1$
Analytic cond. $1878.08$
Root an. cond. $43.3368$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 4·11-s + 2·13-s − 2·17-s − 27-s − 6·29-s + 8·31-s − 4·33-s + 2·37-s − 2·39-s + 6·41-s − 4·43-s + 2·51-s − 6·53-s − 8·59-s − 2·61-s − 4·67-s + 4·71-s − 10·73-s − 12·79-s + 81-s + 4·83-s + 6·87-s + 6·89-s − 8·93-s − 2·97-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 1.20·11-s + 0.554·13-s − 0.485·17-s − 0.192·27-s − 1.11·29-s + 1.43·31-s − 0.696·33-s + 0.328·37-s − 0.320·39-s + 0.937·41-s − 0.609·43-s + 0.280·51-s − 0.824·53-s − 1.04·59-s − 0.256·61-s − 0.488·67-s + 0.474·71-s − 1.17·73-s − 1.35·79-s + 1/9·81-s + 0.439·83-s + 0.643·87-s + 0.635·89-s − 0.829·93-s − 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235200\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1878.08\)
Root analytic conductor: \(43.3368\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 235200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.787743345\)
\(L(\frac12)\) \(\approx\) \(1.787743345\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92807737274742, −12.36664204052860, −11.92804404644721, −11.44541584136987, −11.21236910569594, −10.68289742217671, −10.10818760623217, −9.695222273543457, −9.097611671835043, −8.849578621842293, −8.225846324333534, −7.597311369468241, −7.245454570689042, −6.515960695278703, −6.211574975553266, −5.944906435397199, −5.129272725393547, −4.645019495291146, −4.155522822433315, −3.699496612554809, −3.055816142773119, −2.382640476629051, −1.566281740167079, −1.235077987490175, −0.4033479067001509, 0.4033479067001509, 1.235077987490175, 1.566281740167079, 2.382640476629051, 3.055816142773119, 3.699496612554809, 4.155522822433315, 4.645019495291146, 5.129272725393547, 5.944906435397199, 6.211574975553266, 6.515960695278703, 7.245454570689042, 7.597311369468241, 8.225846324333534, 8.849578621842293, 9.097611671835043, 9.695222273543457, 10.10818760623217, 10.68289742217671, 11.21236910569594, 11.44541584136987, 11.92804404644721, 12.36664204052860, 12.92807737274742

Graph of the $Z$-function along the critical line