| L(s)  = 1 | − 3-s             + 9-s         + 5·13-s         + 6·17-s     − 7·19-s         − 6·23-s         − 27-s         − 8·31-s             − 37-s     − 5·39-s         − 8·43-s         + 6·47-s         − 6·51-s     − 6·53-s         + 7·57-s     − 6·59-s     + 61-s             + 13·67-s     + 6·69-s     − 12·71-s     − 5·73-s             + 7·79-s     + 81-s     + 18·83-s             − 6·89-s         + 8·93-s         + 7·97-s  + ⋯ | 
| L(s)  = 1 | − 0.577·3-s             + 1/3·9-s         + 1.38·13-s         + 1.45·17-s     − 1.60·19-s         − 1.25·23-s         − 0.192·27-s         − 1.43·31-s             − 0.164·37-s     − 0.800·39-s         − 1.21·43-s         + 0.875·47-s         − 0.840·51-s     − 0.824·53-s         + 0.927·57-s     − 0.781·59-s     + 0.128·61-s             + 1.58·67-s     + 0.722·69-s     − 1.42·71-s     − 0.585·73-s             + 0.787·79-s     + 1/9·81-s     + 1.97·83-s             − 0.635·89-s         + 0.829·93-s         + 0.710·97-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(1.406023814\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.406023814\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 + T \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 7 | \( 1 \) |  | 
| good | 11 | \( 1 + p T^{2} \) | 1.11.a | 
|  | 13 | \( 1 - 5 T + p T^{2} \) | 1.13.af | 
|  | 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag | 
|  | 19 | \( 1 + 7 T + p T^{2} \) | 1.19.h | 
|  | 23 | \( 1 + 6 T + p T^{2} \) | 1.23.g | 
|  | 29 | \( 1 + p T^{2} \) | 1.29.a | 
|  | 31 | \( 1 + 8 T + p T^{2} \) | 1.31.i | 
|  | 37 | \( 1 + T + p T^{2} \) | 1.37.b | 
|  | 41 | \( 1 + p T^{2} \) | 1.41.a | 
|  | 43 | \( 1 + 8 T + p T^{2} \) | 1.43.i | 
|  | 47 | \( 1 - 6 T + p T^{2} \) | 1.47.ag | 
|  | 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g | 
|  | 59 | \( 1 + 6 T + p T^{2} \) | 1.59.g | 
|  | 61 | \( 1 - T + p T^{2} \) | 1.61.ab | 
|  | 67 | \( 1 - 13 T + p T^{2} \) | 1.67.an | 
|  | 71 | \( 1 + 12 T + p T^{2} \) | 1.71.m | 
|  | 73 | \( 1 + 5 T + p T^{2} \) | 1.73.f | 
|  | 79 | \( 1 - 7 T + p T^{2} \) | 1.79.ah | 
|  | 83 | \( 1 - 18 T + p T^{2} \) | 1.83.as | 
|  | 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g | 
|  | 97 | \( 1 - 7 T + p T^{2} \) | 1.97.ah | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.86279106616597, −12.39287725908031, −12.04721610914052, −11.50818626487308, −10.96475957766670, −10.67809164403328, −10.22520225466460, −9.750106293061544, −9.163322984159538, −8.650018298115504, −8.173745104853740, −7.799173581242862, −7.180679589802778, −6.597081402282082, −6.116541995638510, −5.814895075181796, −5.326990372382020, −4.624839336286340, −4.128019394161459, −3.522742078608354, −3.294529744089385, −2.173806647135101, −1.795964134235755, −1.136837633656596, −0.3604775758290259, 
0.3604775758290259, 1.136837633656596, 1.795964134235755, 2.173806647135101, 3.294529744089385, 3.522742078608354, 4.128019394161459, 4.624839336286340, 5.326990372382020, 5.814895075181796, 6.116541995638510, 6.597081402282082, 7.180679589802778, 7.799173581242862, 8.173745104853740, 8.650018298115504, 9.163322984159538, 9.750106293061544, 10.22520225466460, 10.67809164403328, 10.96475957766670, 11.50818626487308, 12.04721610914052, 12.39287725908031, 12.86279106616597
