Properties

Label 2-235200-1.1-c1-0-112
Degree $2$
Conductor $235200$
Sign $1$
Analytic cond. $1878.08$
Root an. cond. $43.3368$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 5·13-s + 6·17-s − 7·19-s − 6·23-s − 27-s − 8·31-s − 37-s − 5·39-s − 8·43-s + 6·47-s − 6·51-s − 6·53-s + 7·57-s − 6·59-s + 61-s + 13·67-s + 6·69-s − 12·71-s − 5·73-s + 7·79-s + 81-s + 18·83-s − 6·89-s + 8·93-s + 7·97-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 1.38·13-s + 1.45·17-s − 1.60·19-s − 1.25·23-s − 0.192·27-s − 1.43·31-s − 0.164·37-s − 0.800·39-s − 1.21·43-s + 0.875·47-s − 0.840·51-s − 0.824·53-s + 0.927·57-s − 0.781·59-s + 0.128·61-s + 1.58·67-s + 0.722·69-s − 1.42·71-s − 0.585·73-s + 0.787·79-s + 1/9·81-s + 1.97·83-s − 0.635·89-s + 0.829·93-s + 0.710·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235200\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1878.08\)
Root analytic conductor: \(43.3368\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 235200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.406023814\)
\(L(\frac12)\) \(\approx\) \(1.406023814\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86279106616597, −12.39287725908031, −12.04721610914052, −11.50818626487308, −10.96475957766670, −10.67809164403328, −10.22520225466460, −9.750106293061544, −9.163322984159538, −8.650018298115504, −8.173745104853740, −7.799173581242862, −7.180679589802778, −6.597081402282082, −6.116541995638510, −5.814895075181796, −5.326990372382020, −4.624839336286340, −4.128019394161459, −3.522742078608354, −3.294529744089385, −2.173806647135101, −1.795964134235755, −1.136837633656596, −0.3604775758290259, 0.3604775758290259, 1.136837633656596, 1.795964134235755, 2.173806647135101, 3.294529744089385, 3.522742078608354, 4.128019394161459, 4.624839336286340, 5.326990372382020, 5.814895075181796, 6.116541995638510, 6.597081402282082, 7.180679589802778, 7.799173581242862, 8.173745104853740, 8.650018298115504, 9.163322984159538, 9.750106293061544, 10.22520225466460, 10.67809164403328, 10.96475957766670, 11.50818626487308, 12.04721610914052, 12.39287725908031, 12.86279106616597

Graph of the $Z$-function along the critical line