Properties

Label 235200.io
Number of curves $2$
Conductor $235200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("io1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 235200.io have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 235200.io do not have complex multiplication.

Modular form 235200.2.a.io

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + 5 q^{13} + 6 q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 235200.io

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
235200.io1 235200io1 \([0, -1, 0, -70600833, -228822890463]\) \(-2637114025/6912\) \(-102006539550720000000000\) \([]\) \(34836480\) \(3.2903\) \(\Gamma_0(N)\)-optimal
235200.io2 235200io2 \([0, -1, 0, 135199167, -1163360690463]\) \(18519167975/50331648\) \(-742788952888442880000000000\) \([]\) \(104509440\) \(3.8396\)