Properties

Label 2-2340-1.1-c1-0-4
Degree $2$
Conductor $2340$
Sign $1$
Analytic cond. $18.6849$
Root an. cond. $4.32261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 11-s − 13-s + 5·17-s − 3·23-s + 25-s + 2·29-s − 6·31-s + 35-s + 37-s + 7·41-s + 2·43-s + 6·47-s − 6·49-s + 5·53-s − 55-s + 4·59-s − 7·61-s + 65-s + 12·67-s + 71-s + 10·73-s − 77-s + 11·79-s + 12·83-s − 5·85-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 0.301·11-s − 0.277·13-s + 1.21·17-s − 0.625·23-s + 1/5·25-s + 0.371·29-s − 1.07·31-s + 0.169·35-s + 0.164·37-s + 1.09·41-s + 0.304·43-s + 0.875·47-s − 6/7·49-s + 0.686·53-s − 0.134·55-s + 0.520·59-s − 0.896·61-s + 0.124·65-s + 1.46·67-s + 0.118·71-s + 1.17·73-s − 0.113·77-s + 1.23·79-s + 1.31·83-s − 0.542·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2340\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(18.6849\)
Root analytic conductor: \(4.32261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2340,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.501844655\)
\(L(\frac12)\) \(\approx\) \(1.501844655\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 + T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.098186629469526853151658183392, −8.062276134701930237978779824513, −7.57196959268051820934545497771, −6.69412594520033315755042481157, −5.87260904722898126690054128166, −5.05591228492984513329523909335, −4.00048372273859856959658740977, −3.34767981023045646795364093942, −2.20644842512625434144019888859, −0.790324837918246793898471311545, 0.790324837918246793898471311545, 2.20644842512625434144019888859, 3.34767981023045646795364093942, 4.00048372273859856959658740977, 5.05591228492984513329523909335, 5.87260904722898126690054128166, 6.69412594520033315755042481157, 7.57196959268051820934545497771, 8.062276134701930237978779824513, 9.098186629469526853151658183392

Graph of the $Z$-function along the critical line