Properties

Label 2-23100-1.1-c1-0-32
Degree $2$
Conductor $23100$
Sign $-1$
Analytic cond. $184.454$
Root an. cond. $13.5814$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s − 11-s + 4·13-s + 21-s − 4·23-s + 27-s + 2·29-s − 4·31-s − 33-s + 8·37-s + 4·39-s − 2·41-s − 8·43-s − 12·47-s + 49-s − 4·53-s − 12·59-s + 2·61-s + 63-s + 4·67-s − 4·69-s − 8·71-s − 12·73-s − 77-s − 4·79-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.301·11-s + 1.10·13-s + 0.218·21-s − 0.834·23-s + 0.192·27-s + 0.371·29-s − 0.718·31-s − 0.174·33-s + 1.31·37-s + 0.640·39-s − 0.312·41-s − 1.21·43-s − 1.75·47-s + 1/7·49-s − 0.549·53-s − 1.56·59-s + 0.256·61-s + 0.125·63-s + 0.488·67-s − 0.481·69-s − 0.949·71-s − 1.40·73-s − 0.113·77-s − 0.450·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(184.454\)
Root analytic conductor: \(13.5814\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23100,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
11 \( 1 + T \)
good13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.73042109897710, −15.11652983684850, −14.68898617756087, −14.12367274183507, −13.59576870386162, −13.11285040415659, −12.67912441244945, −11.82650500157983, −11.43397738933561, −10.79630244564945, −10.25488393484934, −9.640634785115160, −9.087768014358602, −8.350322682794498, −8.101817665451943, −7.487446938570076, −6.671490719047542, −6.156904338269559, −5.470378168404055, −4.692707887069200, −4.122664541960705, −3.379399779812400, −2.812343470519211, −1.831007777627419, −1.317644994040928, 0, 1.317644994040928, 1.831007777627419, 2.812343470519211, 3.379399779812400, 4.122664541960705, 4.692707887069200, 5.470378168404055, 6.156904338269559, 6.671490719047542, 7.487446938570076, 8.101817665451943, 8.350322682794498, 9.087768014358602, 9.640634785115160, 10.25488393484934, 10.79630244564945, 11.43397738933561, 11.82650500157983, 12.67912441244945, 13.11285040415659, 13.59576870386162, 14.12367274183507, 14.68898617756087, 15.11652983684850, 15.73042109897710

Graph of the $Z$-function along the critical line