Properties

Label 2-23100-1.1-c1-0-16
Degree $2$
Conductor $23100$
Sign $-1$
Analytic cond. $184.454$
Root an. cond. $13.5814$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s − 11-s − 4·13-s + 21-s + 4·23-s − 27-s + 2·29-s − 4·31-s + 33-s − 8·37-s + 4·39-s − 2·41-s + 8·43-s + 12·47-s + 49-s + 4·53-s − 12·59-s + 2·61-s − 63-s − 4·67-s − 4·69-s − 8·71-s + 12·73-s + 77-s − 4·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.301·11-s − 1.10·13-s + 0.218·21-s + 0.834·23-s − 0.192·27-s + 0.371·29-s − 0.718·31-s + 0.174·33-s − 1.31·37-s + 0.640·39-s − 0.312·41-s + 1.21·43-s + 1.75·47-s + 1/7·49-s + 0.549·53-s − 1.56·59-s + 0.256·61-s − 0.125·63-s − 0.488·67-s − 0.481·69-s − 0.949·71-s + 1.40·73-s + 0.113·77-s − 0.450·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(184.454\)
Root analytic conductor: \(13.5814\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23100,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 + T \)
good13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.69027679683811, −15.32073953628611, −14.74500337581255, −14.04247610694573, −13.63748099288277, −12.86003386739192, −12.43028484860940, −12.10796881032334, −11.37084209638074, −10.75663402616314, −10.33763750535456, −9.800186247943418, −9.032852908992300, −8.760205202415578, −7.562214316823654, −7.442308365454713, −6.732984508238772, −6.057482461677654, −5.411492135374102, −4.918237060367551, −4.248531273026684, −3.433543452243221, −2.693616616576539, −1.968869667773541, −0.8957042270534924, 0, 0.8957042270534924, 1.968869667773541, 2.693616616576539, 3.433543452243221, 4.248531273026684, 4.918237060367551, 5.411492135374102, 6.057482461677654, 6.732984508238772, 7.442308365454713, 7.562214316823654, 8.760205202415578, 9.032852908992300, 9.800186247943418, 10.33763750535456, 10.75663402616314, 11.37084209638074, 12.10796881032334, 12.43028484860940, 12.86003386739192, 13.63748099288277, 14.04247610694573, 14.74500337581255, 15.32073953628611, 15.69027679683811

Graph of the $Z$-function along the critical line