Properties

Label 2-222024-1.1-c1-0-18
Degree $2$
Conductor $222024$
Sign $-1$
Analytic cond. $1772.87$
Root an. cond. $42.1054$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 2·7-s + 9-s + 11-s + 2·13-s + 15-s + 2·21-s + 7·23-s − 4·25-s + 27-s − 9·31-s + 33-s + 2·35-s + 10·37-s + 2·39-s + 4·43-s + 45-s − 3·49-s − 53-s + 55-s + 59-s − 12·61-s + 2·63-s + 2·65-s − 12·67-s + 7·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.301·11-s + 0.554·13-s + 0.258·15-s + 0.436·21-s + 1.45·23-s − 4/5·25-s + 0.192·27-s − 1.61·31-s + 0.174·33-s + 0.338·35-s + 1.64·37-s + 0.320·39-s + 0.609·43-s + 0.149·45-s − 3/7·49-s − 0.137·53-s + 0.134·55-s + 0.130·59-s − 1.53·61-s + 0.251·63-s + 0.248·65-s − 1.46·67-s + 0.842·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 222024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 222024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(222024\)    =    \(2^{3} \cdot 3 \cdot 11 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(1772.87\)
Root analytic conductor: \(42.1054\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 222024,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 - T \)
29 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.31977417108568, −12.86763943030680, −12.30935312153633, −11.77450680180310, −11.24732150309848, −10.79634610471806, −10.62489341475473, −9.646066012698324, −9.472119754961216, −9.015078768733383, −8.532747939344664, −8.016101405210268, −7.451721392951964, −7.256296140521138, −6.362061227744952, −6.104115092889764, −5.395408519013808, −5.007063852814100, −4.267169324806613, −3.984003947151024, −3.202074214808999, −2.759288608657813, −2.074665304827081, −1.460661064930232, −1.121416583371151, 0, 1.121416583371151, 1.460661064930232, 2.074665304827081, 2.759288608657813, 3.202074214808999, 3.984003947151024, 4.267169324806613, 5.007063852814100, 5.395408519013808, 6.104115092889764, 6.362061227744952, 7.256296140521138, 7.451721392951964, 8.016101405210268, 8.532747939344664, 9.015078768733383, 9.472119754961216, 9.646066012698324, 10.62489341475473, 10.79634610471806, 11.24732150309848, 11.77450680180310, 12.30935312153633, 12.86763943030680, 13.31977417108568

Graph of the $Z$-function along the critical line