Properties

Label 222024.q
Number of curves $1$
Conductor $222024$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 222024.q1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(29\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 222024.q do not have complex multiplication.

Modular form 222024.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 2 q^{7} + q^{9} + q^{11} + 2 q^{13} + q^{15} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 222024.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
222024.q1 222024d1 \([0, 1, 0, -423750745, 11077287380027]\) \(-65709957893057536/375913713056211\) \(-48140668554040367439859397376\) \([]\) \(146327040\) \(4.1876\) \(\Gamma_0(N)\)-optimal