Properties

Label 2-222024-1.1-c1-0-12
Degree $2$
Conductor $222024$
Sign $-1$
Analytic cond. $1772.87$
Root an. cond. $42.1054$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 2·7-s + 9-s − 11-s + 2·13-s − 15-s − 2·21-s + 7·23-s − 4·25-s − 27-s + 9·31-s + 33-s + 2·35-s − 10·37-s − 2·39-s − 4·43-s + 45-s − 3·49-s − 53-s − 55-s + 59-s + 12·61-s + 2·63-s + 2·65-s − 12·67-s − 7·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.301·11-s + 0.554·13-s − 0.258·15-s − 0.436·21-s + 1.45·23-s − 4/5·25-s − 0.192·27-s + 1.61·31-s + 0.174·33-s + 0.338·35-s − 1.64·37-s − 0.320·39-s − 0.609·43-s + 0.149·45-s − 3/7·49-s − 0.137·53-s − 0.134·55-s + 0.130·59-s + 1.53·61-s + 0.251·63-s + 0.248·65-s − 1.46·67-s − 0.842·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 222024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 222024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(222024\)    =    \(2^{3} \cdot 3 \cdot 11 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(1772.87\)
Root analytic conductor: \(42.1054\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 222024,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
29 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.22718945996259, −12.81306660659923, −12.03622831641269, −11.88904130489455, −11.29483756934570, −10.89856917827620, −10.47880328056910, −9.974494979887589, −9.594134019745501, −8.868910676985639, −8.492616217067817, −8.081257167736756, −7.430915019335437, −6.944506664753653, −6.491028086470941, −5.953103588908723, −5.410922170194254, −5.021098205554178, −4.582434465484198, −3.951706421543620, −3.278563555806575, −2.726598507095876, −1.967608387039675, −1.449070989347856, −0.8993491254208363, 0, 0.8993491254208363, 1.449070989347856, 1.967608387039675, 2.726598507095876, 3.278563555806575, 3.951706421543620, 4.582434465484198, 5.021098205554178, 5.410922170194254, 5.953103588908723, 6.491028086470941, 6.944506664753653, 7.430915019335437, 8.081257167736756, 8.492616217067817, 8.868910676985639, 9.594134019745501, 9.974494979887589, 10.47880328056910, 10.89856917827620, 11.29483756934570, 11.88904130489455, 12.03622831641269, 12.81306660659923, 13.22718945996259

Graph of the $Z$-function along the critical line