Properties

Label 2-2214-1.1-c1-0-34
Degree $2$
Conductor $2214$
Sign $-1$
Analytic cond. $17.6788$
Root an. cond. $4.20462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 7-s − 8-s + 10-s + 11-s + 2·13-s + 14-s + 16-s − 4·17-s + 4·19-s − 20-s − 22-s − 4·23-s − 4·25-s − 2·26-s − 28-s + 2·29-s − 5·31-s − 32-s + 4·34-s + 35-s + 8·37-s − 4·38-s + 40-s + 41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.377·7-s − 0.353·8-s + 0.316·10-s + 0.301·11-s + 0.554·13-s + 0.267·14-s + 1/4·16-s − 0.970·17-s + 0.917·19-s − 0.223·20-s − 0.213·22-s − 0.834·23-s − 4/5·25-s − 0.392·26-s − 0.188·28-s + 0.371·29-s − 0.898·31-s − 0.176·32-s + 0.685·34-s + 0.169·35-s + 1.31·37-s − 0.648·38-s + 0.158·40-s + 0.156·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2214\)    =    \(2 \cdot 3^{3} \cdot 41\)
Sign: $-1$
Analytic conductor: \(17.6788\)
Root analytic conductor: \(4.20462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2214,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
41 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 13 T + p T^{2} \) 1.83.n
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.700019904160032547114765269254, −7.896315211732471771349163315903, −7.30964817955397906768521459416, −6.36220100362852171034641416074, −5.78676090235186788843455685481, −4.46969343217657062525490222266, −3.66331656518873575452699806263, −2.63412998189801327801840670109, −1.41687392997631507529266225221, 0, 1.41687392997631507529266225221, 2.63412998189801327801840670109, 3.66331656518873575452699806263, 4.46969343217657062525490222266, 5.78676090235186788843455685481, 6.36220100362852171034641416074, 7.30964817955397906768521459416, 7.896315211732471771349163315903, 8.700019904160032547114765269254

Graph of the $Z$-function along the critical line