Properties

Label 2-2160-1.1-c1-0-6
Degree $2$
Conductor $2160$
Sign $1$
Analytic cond. $17.2476$
Root an. cond. $4.15303$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·7-s − 6·11-s − 4·13-s − 3·17-s + 7·19-s + 9·23-s + 25-s + 7·31-s − 4·35-s + 2·37-s + 6·41-s − 2·43-s + 9·49-s + 9·53-s + 6·55-s + 12·59-s − 7·61-s + 4·65-s − 2·67-s − 6·71-s + 2·73-s − 24·77-s + 79-s − 9·83-s + 3·85-s − 6·89-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.51·7-s − 1.80·11-s − 1.10·13-s − 0.727·17-s + 1.60·19-s + 1.87·23-s + 1/5·25-s + 1.25·31-s − 0.676·35-s + 0.328·37-s + 0.937·41-s − 0.304·43-s + 9/7·49-s + 1.23·53-s + 0.809·55-s + 1.56·59-s − 0.896·61-s + 0.496·65-s − 0.244·67-s − 0.712·71-s + 0.234·73-s − 2.73·77-s + 0.112·79-s − 0.987·83-s + 0.325·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(17.2476\)
Root analytic conductor: \(4.15303\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.700553425\)
\(L(\frac12)\) \(\approx\) \(1.700553425\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.906429353426188429522870318186, −8.192207746583714863523309085769, −7.48994188453136730683659056906, −7.16773505985843393013962155051, −5.60918665203988893042610744568, −4.93221836093927602314931363120, −4.58667466503297356148866327247, −3.02936661322764799346381980481, −2.33312000481442186435405366920, −0.862830882447946380721061484065, 0.862830882447946380721061484065, 2.33312000481442186435405366920, 3.02936661322764799346381980481, 4.58667466503297356148866327247, 4.93221836093927602314931363120, 5.60918665203988893042610744568, 7.16773505985843393013962155051, 7.48994188453136730683659056906, 8.192207746583714863523309085769, 8.906429353426188429522870318186

Graph of the $Z$-function along the critical line