Properties

Label 2-2160-1.1-c1-0-26
Degree $2$
Conductor $2160$
Sign $-1$
Analytic cond. $17.2476$
Root an. cond. $4.15303$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s + 2·13-s − 3·17-s − 5·19-s − 3·23-s + 25-s − 6·29-s − 5·31-s − 2·35-s + 2·37-s + 12·41-s − 8·43-s + 12·47-s − 3·49-s − 3·53-s − 6·59-s − 7·61-s + 2·65-s − 2·67-s − 12·71-s − 16·73-s + 79-s + 15·83-s − 3·85-s − 12·89-s − 4·91-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s + 0.554·13-s − 0.727·17-s − 1.14·19-s − 0.625·23-s + 1/5·25-s − 1.11·29-s − 0.898·31-s − 0.338·35-s + 0.328·37-s + 1.87·41-s − 1.21·43-s + 1.75·47-s − 3/7·49-s − 0.412·53-s − 0.781·59-s − 0.896·61-s + 0.248·65-s − 0.244·67-s − 1.42·71-s − 1.87·73-s + 0.112·79-s + 1.64·83-s − 0.325·85-s − 1.27·89-s − 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(17.2476\)
Root analytic conductor: \(4.15303\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.974323791517727613156969717226, −7.900894106986642924656260802762, −7.06762267986217976292626373786, −6.16509796689029791039542762193, −5.81567551008123256451318638521, −4.52615608168038150770349947310, −3.77514119356411728518356442270, −2.68476537451454374825128175456, −1.69695413361885578786474643023, 0, 1.69695413361885578786474643023, 2.68476537451454374825128175456, 3.77514119356411728518356442270, 4.52615608168038150770349947310, 5.81567551008123256451318638521, 6.16509796689029791039542762193, 7.06762267986217976292626373786, 7.900894106986642924656260802762, 8.974323791517727613156969717226

Graph of the $Z$-function along the critical line