Properties

Label 2-21168-1.1-c1-0-11
Degree $2$
Conductor $21168$
Sign $1$
Analytic cond. $169.027$
Root an. cond. $13.0010$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 11-s − 2·13-s − 6·17-s + 5·19-s + 3·23-s − 4·25-s − 2·29-s − 5·31-s + 3·37-s + 3·41-s + 2·43-s + 10·47-s − 8·53-s + 55-s + 10·59-s − 4·61-s + 2·65-s − 10·67-s − 13·71-s + 14·73-s + 2·79-s − 6·83-s + 6·85-s − 17·89-s − 5·95-s − 4·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.301·11-s − 0.554·13-s − 1.45·17-s + 1.14·19-s + 0.625·23-s − 4/5·25-s − 0.371·29-s − 0.898·31-s + 0.493·37-s + 0.468·41-s + 0.304·43-s + 1.45·47-s − 1.09·53-s + 0.134·55-s + 1.30·59-s − 0.512·61-s + 0.248·65-s − 1.22·67-s − 1.54·71-s + 1.63·73-s + 0.225·79-s − 0.658·83-s + 0.650·85-s − 1.80·89-s − 0.512·95-s − 0.406·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21168\)    =    \(2^{4} \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(169.027\)
Root analytic conductor: \(13.0010\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21168,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.153716141\)
\(L(\frac12)\) \(\approx\) \(1.153716141\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 17 T + p T^{2} \) 1.89.r
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.58589738211322, −15.12223603102802, −14.58501419743357, −13.89570193961795, −13.42231234709085, −12.89481121321372, −12.28233419310354, −11.76466361102190, −11.04301038134209, −10.91753738807970, −9.967998283216074, −9.424849181511540, −8.974542215021362, −8.273563238418095, −7.490262122283073, −7.312845728955364, −6.533890130581444, −5.717966809465267, −5.235248748597492, −4.403417107063559, −3.972104032773087, −3.036342954148758, −2.446195400662350, −1.558438883926281, −0.4338891794812387, 0.4338891794812387, 1.558438883926281, 2.446195400662350, 3.036342954148758, 3.972104032773087, 4.403417107063559, 5.235248748597492, 5.717966809465267, 6.533890130581444, 7.312845728955364, 7.490262122283073, 8.273563238418095, 8.974542215021362, 9.424849181511540, 9.967998283216074, 10.91753738807970, 11.04301038134209, 11.76466361102190, 12.28233419310354, 12.89481121321372, 13.42231234709085, 13.89570193961795, 14.58501419743357, 15.12223603102802, 15.58589738211322

Graph of the $Z$-function along the critical line