Properties

Label 2-200376-1.1-c1-0-26
Degree $2$
Conductor $200376$
Sign $-1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·7-s − 2·13-s − 2·17-s − 3·19-s + 23-s − 5·25-s + 2·29-s + 5·31-s − 7·37-s − 4·43-s + 8·47-s + 2·49-s + 4·53-s + 6·59-s − 11·61-s − 5·67-s + 6·71-s + 5·73-s − 5·79-s + 4·83-s + 2·89-s + 6·91-s + 19·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 1.13·7-s − 0.554·13-s − 0.485·17-s − 0.688·19-s + 0.208·23-s − 25-s + 0.371·29-s + 0.898·31-s − 1.15·37-s − 0.609·43-s + 1.16·47-s + 2/7·49-s + 0.549·53-s + 0.781·59-s − 1.40·61-s − 0.610·67-s + 0.712·71-s + 0.585·73-s − 0.562·79-s + 0.439·83-s + 0.211·89-s + 0.628·91-s + 1.92·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 3 T + p T^{2} \) 1.19.d
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 19 T + p T^{2} \) 1.97.at
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.40377697906135, −12.78168269662388, −12.35436723675224, −12.00211284407368, −11.50736740271856, −10.88122786579639, −10.34357913493003, −10.06189925494890, −9.596000482343493, −8.983262285747534, −8.704284592614605, −8.073505888057303, −7.472501894459506, −7.056745406361341, −6.438730759208465, −6.226208326051121, −5.583937343142372, −4.929708363697114, −4.489254577568883, −3.784313105495362, −3.430119040939533, −2.660659556912018, −2.298308602560639, −1.555158445315228, −0.6198087323819761, 0, 0.6198087323819761, 1.555158445315228, 2.298308602560639, 2.660659556912018, 3.430119040939533, 3.784313105495362, 4.489254577568883, 4.929708363697114, 5.583937343142372, 6.226208326051121, 6.438730759208465, 7.056745406361341, 7.472501894459506, 8.073505888057303, 8.704284592614605, 8.983262285747534, 9.596000482343493, 10.06189925494890, 10.34357913493003, 10.88122786579639, 11.50736740271856, 12.00211284407368, 12.35436723675224, 12.78168269662388, 13.40377697906135

Graph of the $Z$-function along the critical line