Properties

Label 2-19800-1.1-c1-0-33
Degree $2$
Conductor $19800$
Sign $-1$
Analytic cond. $158.103$
Root an. cond. $12.5739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 11-s + 17-s + 19-s − 5·23-s + 6·29-s − 6·31-s + 9·37-s + 5·41-s + 4·43-s − 7·47-s − 6·49-s + 4·53-s − 9·59-s − 12·61-s + 4·67-s − 15·71-s − 4·73-s − 77-s − 11·79-s + 6·83-s − 8·89-s + 97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.377·7-s + 0.301·11-s + 0.242·17-s + 0.229·19-s − 1.04·23-s + 1.11·29-s − 1.07·31-s + 1.47·37-s + 0.780·41-s + 0.609·43-s − 1.02·47-s − 6/7·49-s + 0.549·53-s − 1.17·59-s − 1.53·61-s + 0.488·67-s − 1.78·71-s − 0.468·73-s − 0.113·77-s − 1.23·79-s + 0.658·83-s − 0.847·89-s + 0.101·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(158.103\)
Root analytic conductor: \(12.5739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.03786226486191, −15.47777010691852, −14.73658007443912, −14.36835430277384, −13.81795604215069, −13.19408122435258, −12.62207038997642, −12.19728664949112, −11.50276647481075, −11.07603924125126, −10.27865548862114, −9.868535513858996, −9.258133294047520, −8.730175402597087, −7.936954762387724, −7.527109529167322, −6.802731167897023, −5.974094682953013, −5.874517918017530, −4.700280689859754, −4.322931394412948, −3.417669417641055, −2.867541820932547, −1.952786993241799, −1.097217893408254, 0, 1.097217893408254, 1.952786993241799, 2.867541820932547, 3.417669417641055, 4.322931394412948, 4.700280689859754, 5.874517918017530, 5.974094682953013, 6.802731167897023, 7.527109529167322, 7.936954762387724, 8.730175402597087, 9.258133294047520, 9.868535513858996, 10.27865548862114, 11.07603924125126, 11.50276647481075, 12.19728664949112, 12.62207038997642, 13.19408122435258, 13.81795604215069, 14.36835430277384, 14.73658007443912, 15.47777010691852, 16.03786226486191

Graph of the $Z$-function along the critical line