Properties

Label 2-19800-1.1-c1-0-16
Degree $2$
Conductor $19800$
Sign $1$
Analytic cond. $158.103$
Root an. cond. $12.5739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 11-s + 4·13-s + 4·17-s − 4·23-s + 6·29-s − 8·31-s + 2·37-s + 10·41-s − 10·43-s − 12·47-s − 3·49-s + 6·53-s + 12·59-s + 10·61-s + 8·67-s − 4·73-s + 2·77-s + 4·79-s + 2·83-s + 10·89-s + 8·91-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.755·7-s + 0.301·11-s + 1.10·13-s + 0.970·17-s − 0.834·23-s + 1.11·29-s − 1.43·31-s + 0.328·37-s + 1.56·41-s − 1.52·43-s − 1.75·47-s − 3/7·49-s + 0.824·53-s + 1.56·59-s + 1.28·61-s + 0.977·67-s − 0.468·73-s + 0.227·77-s + 0.450·79-s + 0.219·83-s + 1.05·89-s + 0.838·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(158.103\)
Root analytic conductor: \(12.5739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.913613138\)
\(L(\frac12)\) \(\approx\) \(2.913613138\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.85511432037589, −14.90286866215786, −14.56488949092010, −14.24017078739841, −13.40473237923224, −13.08851603445373, −12.27828022769911, −11.81934912390799, −11.20013252178955, −10.87945745033233, −9.977730345593864, −9.709585183191490, −8.792574207437516, −8.262298593564026, −7.962662627371525, −7.098317250513902, −6.508341549002898, −5.803110466520395, −5.288204428572703, −4.542773496613180, −3.785063840297848, −3.322780473484934, −2.239316680508191, −1.526347086250867, −0.7532384413812066, 0.7532384413812066, 1.526347086250867, 2.239316680508191, 3.322780473484934, 3.785063840297848, 4.542773496613180, 5.288204428572703, 5.803110466520395, 6.508341549002898, 7.098317250513902, 7.962662627371525, 8.262298593564026, 8.792574207437516, 9.709585183191490, 9.977730345593864, 10.87945745033233, 11.20013252178955, 11.81934912390799, 12.27828022769911, 13.08851603445373, 13.40473237923224, 14.24017078739841, 14.56488949092010, 14.90286866215786, 15.85511432037589

Graph of the $Z$-function along the critical line