Properties

Label 2-19110-1.1-c1-0-40
Degree $2$
Conductor $19110$
Sign $1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s + 4·11-s + 12-s − 13-s + 15-s + 16-s + 6·17-s − 18-s + 8·19-s + 20-s − 4·22-s + 8·23-s − 24-s + 25-s + 26-s + 27-s + 2·29-s − 30-s − 8·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.20·11-s + 0.288·12-s − 0.277·13-s + 0.258·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 1.83·19-s + 0.223·20-s − 0.852·22-s + 1.66·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s + 0.371·29-s − 0.182·30-s − 1.43·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.220318398\)
\(L(\frac12)\) \(\approx\) \(3.220318398\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.73235419961608, −15.11905283939625, −14.64636162501572, −14.11553930239573, −13.76514163410376, −12.91080460457499, −12.39766331067414, −11.75808210223235, −11.36058669209388, −10.51631024111156, −9.980297160731634, −9.468165315126614, −9.049197778141554, −8.607131429979853, −7.620998586602981, −7.313940157565574, −6.827364440025451, −5.841614065256528, −5.424741748224596, −4.577787726404659, −3.475957271380322, −3.230311773526608, −2.307893640503235, −1.301489986399174, −0.9705678323177808, 0.9705678323177808, 1.301489986399174, 2.307893640503235, 3.230311773526608, 3.475957271380322, 4.577787726404659, 5.424741748224596, 5.841614065256528, 6.827364440025451, 7.313940157565574, 7.620998586602981, 8.607131429979853, 9.049197778141554, 9.468165315126614, 9.980297160731634, 10.51631024111156, 11.36058669209388, 11.75808210223235, 12.39766331067414, 12.91080460457499, 13.76514163410376, 14.11553930239573, 14.64636162501572, 15.11905283939625, 15.73235419961608

Graph of the $Z$-function along the critical line