Properties

Label 2-190400-1.1-c1-0-120
Degree $2$
Conductor $190400$
Sign $1$
Analytic cond. $1520.35$
Root an. cond. $38.9916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 7-s + 6·9-s − 2·11-s − 13-s − 17-s − 19-s − 3·21-s + 6·23-s − 9·27-s − 29-s − 5·31-s + 6·33-s − 2·37-s + 3·39-s − 10·41-s − 8·43-s + 11·47-s + 49-s + 3·51-s + 7·53-s + 3·57-s − 9·59-s + 7·61-s + 6·63-s − 8·67-s − 18·69-s + ⋯
L(s)  = 1  − 1.73·3-s + 0.377·7-s + 2·9-s − 0.603·11-s − 0.277·13-s − 0.242·17-s − 0.229·19-s − 0.654·21-s + 1.25·23-s − 1.73·27-s − 0.185·29-s − 0.898·31-s + 1.04·33-s − 0.328·37-s + 0.480·39-s − 1.56·41-s − 1.21·43-s + 1.60·47-s + 1/7·49-s + 0.420·51-s + 0.961·53-s + 0.397·57-s − 1.17·59-s + 0.896·61-s + 0.755·63-s − 0.977·67-s − 2.16·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190400\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(1520.35\)
Root analytic conductor: \(38.9916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 190400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 - 7 T + p T^{2} \) 1.53.ah
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 11 T + p T^{2} \) 1.89.l
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.37870163309837, −13.02292472835391, −12.54432365239941, −12.08488181868233, −11.63979555005800, −11.29215034247175, −10.78626478258921, −10.36456770415811, −10.15807170419425, −9.385909425402597, −8.842052989980729, −8.388627836773766, −7.611388437886180, −7.166673000623471, −6.865424402117083, −6.287400369870416, −5.648159456934302, −5.266684733266343, −5.015112213525091, −4.346983438402300, −3.886451473693572, −3.039124099261775, −2.399894249824524, −1.527543057407315, −1.174543719853865, 0, 0, 1.174543719853865, 1.527543057407315, 2.399894249824524, 3.039124099261775, 3.886451473693572, 4.346983438402300, 5.015112213525091, 5.266684733266343, 5.648159456934302, 6.287400369870416, 6.865424402117083, 7.166673000623471, 7.611388437886180, 8.388627836773766, 8.842052989980729, 9.385909425402597, 10.15807170419425, 10.36456770415811, 10.78626478258921, 11.29215034247175, 11.63979555005800, 12.08488181868233, 12.54432365239941, 13.02292472835391, 13.37870163309837

Graph of the $Z$-function along the critical line