Properties

Label 2-1872-1.1-c1-0-27
Degree $2$
Conductor $1872$
Sign $-1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s − 4·11-s − 13-s + 2·19-s − 4·23-s − 25-s − 2·31-s − 4·35-s − 10·37-s + 2·41-s − 8·43-s − 3·49-s + 12·53-s − 8·55-s − 12·59-s − 6·61-s − 2·65-s + 6·67-s + 8·71-s − 2·73-s + 8·77-s − 12·79-s + 4·83-s + 14·89-s + 2·91-s + 4·95-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s − 1.20·11-s − 0.277·13-s + 0.458·19-s − 0.834·23-s − 1/5·25-s − 0.359·31-s − 0.676·35-s − 1.64·37-s + 0.312·41-s − 1.21·43-s − 3/7·49-s + 1.64·53-s − 1.07·55-s − 1.56·59-s − 0.768·61-s − 0.248·65-s + 0.733·67-s + 0.949·71-s − 0.234·73-s + 0.911·77-s − 1.35·79-s + 0.439·83-s + 1.48·89-s + 0.209·91-s + 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 - 6 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.950372706349134083048997006179, −8.041482403557667156969015802947, −7.24035551944798343142259601469, −6.36989399704388670419576624850, −5.60893272725328236985646474567, −4.97621174476239714900286606303, −3.67011365127036080469261360052, −2.73723000924512648109425921485, −1.80305900996179384247194284878, 0, 1.80305900996179384247194284878, 2.73723000924512648109425921485, 3.67011365127036080469261360052, 4.97621174476239714900286606303, 5.60893272725328236985646474567, 6.36989399704388670419576624850, 7.24035551944798343142259601469, 8.041482403557667156969015802947, 8.950372706349134083048997006179

Graph of the $Z$-function along the critical line