Properties

Label 2-186576-1.1-c1-0-11
Degree $2$
Conductor $186576$
Sign $1$
Analytic cond. $1489.81$
Root an. cond. $38.5981$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·7-s + 9-s − 6·17-s + 2·19-s + 2·21-s + 23-s − 5·25-s + 27-s + 2·29-s − 10·31-s + 2·37-s − 8·41-s + 12·43-s + 4·47-s − 3·49-s − 6·51-s + 6·53-s + 2·57-s + 8·59-s − 6·61-s + 2·63-s − 2·67-s + 69-s + 2·73-s − 5·75-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.755·7-s + 1/3·9-s − 1.45·17-s + 0.458·19-s + 0.436·21-s + 0.208·23-s − 25-s + 0.192·27-s + 0.371·29-s − 1.79·31-s + 0.328·37-s − 1.24·41-s + 1.82·43-s + 0.583·47-s − 3/7·49-s − 0.840·51-s + 0.824·53-s + 0.264·57-s + 1.04·59-s − 0.768·61-s + 0.251·63-s − 0.244·67-s + 0.120·69-s + 0.234·73-s − 0.577·75-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 186576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 186576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(186576\)    =    \(2^{4} \cdot 3 \cdot 13^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1489.81\)
Root analytic conductor: \(38.5981\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 186576,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.656509981\)
\(L(\frac12)\) \(\approx\) \(2.656509981\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.26501810294111, −12.70996469970017, −12.20224236672875, −11.69913659726023, −11.09107517451986, −10.96935527147688, −10.29963347546806, −9.740873339111511, −9.225400654415705, −8.854204143997524, −8.427855351867390, −7.828250592508917, −7.441758893592328, −6.957609241410618, −6.439020760521884, −5.673839500112431, −5.347327913568049, −4.647236281454597, −4.142028542403524, −3.776701865564216, −2.999651619519361, −2.384508180636764, −1.916453317890962, −1.350736900297906, −0.4337363136578870, 0.4337363136578870, 1.350736900297906, 1.916453317890962, 2.384508180636764, 2.999651619519361, 3.776701865564216, 4.142028542403524, 4.647236281454597, 5.347327913568049, 5.673839500112431, 6.439020760521884, 6.957609241410618, 7.441758893592328, 7.828250592508917, 8.427855351867390, 8.854204143997524, 9.225400654415705, 9.740873339111511, 10.29963347546806, 10.96935527147688, 11.09107517451986, 11.69913659726023, 12.20224236672875, 12.70996469970017, 13.26501810294111

Graph of the $Z$-function along the critical line