Properties

Label 2-184-1.1-c1-0-3
Degree $2$
Conductor $184$
Sign $1$
Analytic cond. $1.46924$
Root an. cond. $1.21212$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 2·7-s + 6·9-s − 5·13-s − 6·17-s + 6·19-s − 6·21-s + 23-s − 5·25-s + 9·27-s + 9·29-s + 3·31-s − 8·37-s − 15·39-s + 3·41-s − 8·43-s + 7·47-s − 3·49-s − 18·51-s − 2·53-s + 18·57-s + 4·59-s − 10·61-s − 12·63-s + 8·67-s + 3·69-s + 7·71-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.755·7-s + 2·9-s − 1.38·13-s − 1.45·17-s + 1.37·19-s − 1.30·21-s + 0.208·23-s − 25-s + 1.73·27-s + 1.67·29-s + 0.538·31-s − 1.31·37-s − 2.40·39-s + 0.468·41-s − 1.21·43-s + 1.02·47-s − 3/7·49-s − 2.52·51-s − 0.274·53-s + 2.38·57-s + 0.520·59-s − 1.28·61-s − 1.51·63-s + 0.977·67-s + 0.361·69-s + 0.830·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(184\)    =    \(2^{3} \cdot 23\)
Sign: $1$
Analytic conductor: \(1.46924\)
Root analytic conductor: \(1.21212\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.753106746\)
\(L(\frac12)\) \(\approx\) \(1.753106746\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
23 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.87278196363648315072839026373, −11.87035883342760440963614144523, −10.16281162238176530493877849897, −9.541607038853315592369443150954, −8.669848375640950008472730376997, −7.60364598197277336422475261193, −6.71449048335407632069309819908, −4.73629920554986008413543422689, −3.35238603100137584697524706621, −2.33708962511385070691012062306, 2.33708962511385070691012062306, 3.35238603100137584697524706621, 4.73629920554986008413543422689, 6.71449048335407632069309819908, 7.60364598197277336422475261193, 8.669848375640950008472730376997, 9.541607038853315592369443150954, 10.16281162238176530493877849897, 11.87035883342760440963614144523, 12.87278196363648315072839026373

Graph of the $Z$-function along the critical line