Properties

Label 2-18240-1.1-c1-0-26
Degree $2$
Conductor $18240$
Sign $1$
Analytic cond. $145.647$
Root an. cond. $12.0684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 2·7-s + 9-s + 2·11-s + 4·13-s + 15-s + 2·17-s + 19-s − 2·21-s − 4·23-s + 25-s + 27-s − 4·29-s + 2·33-s − 2·35-s + 4·39-s + 10·43-s + 45-s + 12·47-s − 3·49-s + 2·51-s + 2·53-s + 2·55-s + 57-s − 4·59-s − 2·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s + 0.603·11-s + 1.10·13-s + 0.258·15-s + 0.485·17-s + 0.229·19-s − 0.436·21-s − 0.834·23-s + 1/5·25-s + 0.192·27-s − 0.742·29-s + 0.348·33-s − 0.338·35-s + 0.640·39-s + 1.52·43-s + 0.149·45-s + 1.75·47-s − 3/7·49-s + 0.280·51-s + 0.274·53-s + 0.269·55-s + 0.132·57-s − 0.520·59-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(145.647\)
Root analytic conductor: \(12.0684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 18240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.262595219\)
\(L(\frac12)\) \(\approx\) \(3.262595219\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
19 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.73518697300009, −15.36913737564800, −14.44135435712406, −14.23373186114744, −13.52368046078727, −13.26121139540754, −12.39244100354487, −12.19913902904150, −11.20474978090964, −10.77642048913624, −10.05700441747169, −9.463295539631887, −9.185964860322146, −8.458518573394725, −7.880918150380375, −7.146593574188032, −6.565517126257919, −5.875547358161300, −5.529750653314712, −4.323217502892525, −3.834344614271950, −3.226925497717003, −2.432625847833450, −1.610992132716741, −0.7625019381352025, 0.7625019381352025, 1.610992132716741, 2.432625847833450, 3.226925497717003, 3.834344614271950, 4.323217502892525, 5.529750653314712, 5.875547358161300, 6.565517126257919, 7.146593574188032, 7.880918150380375, 8.458518573394725, 9.185964860322146, 9.463295539631887, 10.05700441747169, 10.77642048913624, 11.20474978090964, 12.19913902904150, 12.39244100354487, 13.26121139540754, 13.52368046078727, 14.23373186114744, 14.44135435712406, 15.36913737564800, 15.73518697300009

Graph of the $Z$-function along the critical line