Properties

Label 2-18240-1.1-c1-0-22
Degree $2$
Conductor $18240$
Sign $1$
Analytic cond. $145.647$
Root an. cond. $12.0684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 2·7-s + 9-s + 4·11-s − 6·13-s − 15-s + 4·17-s − 19-s − 2·21-s + 25-s − 27-s + 10·29-s − 2·31-s − 4·33-s + 2·35-s + 2·37-s + 6·39-s + 8·41-s + 8·43-s + 45-s − 3·49-s − 4·51-s + 6·53-s + 4·55-s + 57-s + 2·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s + 1.20·11-s − 1.66·13-s − 0.258·15-s + 0.970·17-s − 0.229·19-s − 0.436·21-s + 1/5·25-s − 0.192·27-s + 1.85·29-s − 0.359·31-s − 0.696·33-s + 0.338·35-s + 0.328·37-s + 0.960·39-s + 1.24·41-s + 1.21·43-s + 0.149·45-s − 3/7·49-s − 0.560·51-s + 0.824·53-s + 0.539·55-s + 0.132·57-s + 0.260·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(145.647\)
Root analytic conductor: \(12.0684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 18240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.458481260\)
\(L(\frac12)\) \(\approx\) \(2.458481260\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
19 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.96054643199627, −15.01048193183571, −14.61963034998665, −14.28360157886733, −13.76982089339347, −12.84212031728969, −12.32584988566911, −11.96951348102010, −11.48526385094659, −10.70225749731170, −10.25808023378222, −9.581588149791701, −9.221841732695502, −8.368419274971424, −7.723674796938047, −7.133122076024694, −6.572202729449075, −5.820867530558856, −5.337341979241082, −4.508449729725360, −4.258460317793206, −3.058587994737856, −2.334921134362806, −1.451861129528985, −0.7342964636926270, 0.7342964636926270, 1.451861129528985, 2.334921134362806, 3.058587994737856, 4.258460317793206, 4.508449729725360, 5.337341979241082, 5.820867530558856, 6.572202729449075, 7.133122076024694, 7.723674796938047, 8.368419274971424, 9.221841732695502, 9.581588149791701, 10.25808023378222, 10.70225749731170, 11.48526385094659, 11.96951348102010, 12.32584988566911, 12.84212031728969, 13.76982089339347, 14.28360157886733, 14.61963034998665, 15.01048193183571, 15.96054643199627

Graph of the $Z$-function along the critical line