Properties

Label 2-182070-1.1-c1-0-42
Degree $2$
Conductor $182070$
Sign $1$
Analytic cond. $1453.83$
Root an. cond. $38.1292$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 7-s + 8-s + 10-s + 4·11-s − 2·13-s + 14-s + 16-s − 2·19-s + 20-s + 4·22-s − 2·23-s + 25-s − 2·26-s + 28-s + 6·29-s + 32-s + 35-s − 2·37-s − 2·38-s + 40-s + 6·41-s + 6·43-s + 4·44-s − 2·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s + 0.353·8-s + 0.316·10-s + 1.20·11-s − 0.554·13-s + 0.267·14-s + 1/4·16-s − 0.458·19-s + 0.223·20-s + 0.852·22-s − 0.417·23-s + 1/5·25-s − 0.392·26-s + 0.188·28-s + 1.11·29-s + 0.176·32-s + 0.169·35-s − 0.328·37-s − 0.324·38-s + 0.158·40-s + 0.937·41-s + 0.914·43-s + 0.603·44-s − 0.294·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182070\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1453.83\)
Root analytic conductor: \(38.1292\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 182070,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.756144929\)
\(L(\frac12)\) \(\approx\) \(5.756144929\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10029357944010, −12.65029599667507, −12.23692755637291, −11.91310746229982, −11.21452568310358, −11.03438470316776, −10.29021046592587, −9.922187729024274, −9.406514009734880, −8.807388713371871, −8.469093986221945, −7.731832982659187, −7.276683922446389, −6.782041531346666, −6.184661945126364, −5.937425900984784, −5.290846992663631, −4.572750275879901, −4.388039885337117, −3.775252515671655, −3.038373717882296, −2.554890197602775, −1.870254645053073, −1.380474437791311, −0.6015695616475899, 0.6015695616475899, 1.380474437791311, 1.870254645053073, 2.554890197602775, 3.038373717882296, 3.775252515671655, 4.388039885337117, 4.572750275879901, 5.290846992663631, 5.937425900984784, 6.184661945126364, 6.782041531346666, 7.276683922446389, 7.731832982659187, 8.469093986221945, 8.807388713371871, 9.406514009734880, 9.922187729024274, 10.29021046592587, 11.03438470316776, 11.21452568310358, 11.91310746229982, 12.23692755637291, 12.65029599667507, 13.10029357944010

Graph of the $Z$-function along the critical line