Properties

Label 2-182070-1.1-c1-0-105
Degree $2$
Conductor $182070$
Sign $1$
Analytic cond. $1453.83$
Root an. cond. $38.1292$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 7-s − 8-s + 10-s − 2·11-s + 4·13-s + 14-s + 16-s − 4·19-s − 20-s + 2·22-s − 4·23-s + 25-s − 4·26-s − 28-s − 8·29-s + 4·31-s − 32-s + 35-s − 2·37-s + 4·38-s + 40-s − 2·41-s − 4·43-s − 2·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.377·7-s − 0.353·8-s + 0.316·10-s − 0.603·11-s + 1.10·13-s + 0.267·14-s + 1/4·16-s − 0.917·19-s − 0.223·20-s + 0.426·22-s − 0.834·23-s + 1/5·25-s − 0.784·26-s − 0.188·28-s − 1.48·29-s + 0.718·31-s − 0.176·32-s + 0.169·35-s − 0.328·37-s + 0.648·38-s + 0.158·40-s − 0.312·41-s − 0.609·43-s − 0.301·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182070\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1453.83\)
Root analytic conductor: \(38.1292\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 182070,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.42136439488862, −13.15218821853610, −12.68059616239453, −12.18149735947471, −11.55631027791445, −11.22501222585580, −10.82761122043269, −10.20482408804049, −9.947252300849898, −9.341977243326769, −8.759572575222008, −8.275294988956571, −8.146051141593351, −7.372468080410637, −6.992966126864762, −6.361271978412438, −5.965508855631848, −5.475913220161521, −4.695463705006664, −4.128996836223969, −3.562846040269040, −3.101279097904858, −2.383570680814751, −1.744639914312255, −1.173598213324121, 0, 0, 1.173598213324121, 1.744639914312255, 2.383570680814751, 3.101279097904858, 3.562846040269040, 4.128996836223969, 4.695463705006664, 5.475913220161521, 5.965508855631848, 6.361271978412438, 6.992966126864762, 7.372468080410637, 8.146051141593351, 8.275294988956571, 8.759572575222008, 9.341977243326769, 9.947252300849898, 10.20482408804049, 10.82761122043269, 11.22501222585580, 11.55631027791445, 12.18149735947471, 12.68059616239453, 13.15218821853610, 13.42136439488862

Graph of the $Z$-function along the critical line