Properties

Label 2-181056-1.1-c1-0-53
Degree $2$
Conductor $181056$
Sign $-1$
Analytic cond. $1445.73$
Root an. cond. $38.0228$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 4·7-s + 9-s + 2·13-s − 2·15-s + 6·17-s − 8·19-s − 4·21-s − 23-s − 25-s − 27-s − 6·29-s − 8·31-s + 8·35-s + 2·37-s − 2·39-s + 41-s + 12·43-s + 2·45-s + 8·47-s + 9·49-s − 6·51-s − 10·53-s + 8·57-s − 4·59-s − 6·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 1.51·7-s + 1/3·9-s + 0.554·13-s − 0.516·15-s + 1.45·17-s − 1.83·19-s − 0.872·21-s − 0.208·23-s − 1/5·25-s − 0.192·27-s − 1.11·29-s − 1.43·31-s + 1.35·35-s + 0.328·37-s − 0.320·39-s + 0.156·41-s + 1.82·43-s + 0.298·45-s + 1.16·47-s + 9/7·49-s − 0.840·51-s − 1.37·53-s + 1.05·57-s − 0.520·59-s − 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(181056\)    =    \(2^{6} \cdot 3 \cdot 23 \cdot 41\)
Sign: $-1$
Analytic conductor: \(1445.73\)
Root analytic conductor: \(38.0228\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 181056,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
23 \( 1 + T \)
41 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33915983742662, −12.78138283628728, −12.56089619424433, −11.99636585382305, −11.25979812678187, −11.13245846228260, −10.59477744618114, −10.29427149235007, −9.584027368371303, −9.106836361309066, −8.715276585921366, −7.999207885792532, −7.635706899250210, −7.272908485474391, −6.387903331969816, −5.847575449191557, −5.759695018682027, −5.157378581447292, −4.510202966726244, −4.087663926574039, −3.515894228461283, −2.552735320018563, −1.943449048948982, −1.605546670943707, −0.9893559673784060, 0, 0.9893559673784060, 1.605546670943707, 1.943449048948982, 2.552735320018563, 3.515894228461283, 4.087663926574039, 4.510202966726244, 5.157378581447292, 5.759695018682027, 5.847575449191557, 6.387903331969816, 7.272908485474391, 7.635706899250210, 7.999207885792532, 8.715276585921366, 9.106836361309066, 9.584027368371303, 10.29427149235007, 10.59477744618114, 11.13245846228260, 11.25979812678187, 11.99636585382305, 12.56089619424433, 12.78138283628728, 13.33915983742662

Graph of the $Z$-function along the critical line