Properties

Label 2-181056-1.1-c1-0-26
Degree $2$
Conductor $181056$
Sign $1$
Analytic cond. $1445.73$
Root an. cond. $38.0228$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 2·7-s + 9-s − 2·11-s + 2·13-s + 2·15-s − 6·19-s + 2·21-s + 23-s − 25-s + 27-s + 6·29-s − 2·33-s + 4·35-s − 2·37-s + 2·39-s + 41-s + 2·45-s + 8·47-s − 3·49-s + 12·53-s − 4·55-s − 6·57-s + 4·59-s + 6·61-s + 2·63-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 0.755·7-s + 1/3·9-s − 0.603·11-s + 0.554·13-s + 0.516·15-s − 1.37·19-s + 0.436·21-s + 0.208·23-s − 1/5·25-s + 0.192·27-s + 1.11·29-s − 0.348·33-s + 0.676·35-s − 0.328·37-s + 0.320·39-s + 0.156·41-s + 0.298·45-s + 1.16·47-s − 3/7·49-s + 1.64·53-s − 0.539·55-s − 0.794·57-s + 0.520·59-s + 0.768·61-s + 0.251·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(181056\)    =    \(2^{6} \cdot 3 \cdot 23 \cdot 41\)
Sign: $1$
Analytic conductor: \(1445.73\)
Root analytic conductor: \(38.0228\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 181056,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.842269070\)
\(L(\frac12)\) \(\approx\) \(4.842269070\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
23 \( 1 - T \)
41 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23249971225192, −12.76642476813073, −12.39343014158413, −11.67023330504633, −11.26157683916702, −10.62955604873682, −10.28468664529693, −10.01208299001298, −9.228752039009097, −8.781981022015794, −8.486750428569285, −7.971053968677484, −7.466090227866043, −6.843694566300227, −6.317209719267997, −5.881555024812241, −5.232170117765451, −4.845539350116527, −4.149819558553665, −3.745106389437348, −2.916866884160940, −2.292240297126774, −2.065555139630674, −1.303209469691248, −0.6058773470076675, 0.6058773470076675, 1.303209469691248, 2.065555139630674, 2.292240297126774, 2.916866884160940, 3.745106389437348, 4.149819558553665, 4.845539350116527, 5.232170117765451, 5.881555024812241, 6.317209719267997, 6.843694566300227, 7.466090227866043, 7.971053968677484, 8.486750428569285, 8.781981022015794, 9.228752039009097, 10.01208299001298, 10.28468664529693, 10.62955604873682, 11.26157683916702, 11.67023330504633, 12.39343014158413, 12.76642476813073, 13.23249971225192

Graph of the $Z$-function along the critical line