Properties

Label 2-178752-1.1-c1-0-134
Degree $2$
Conductor $178752$
Sign $-1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 4·11-s + 4·13-s + 2·17-s + 19-s − 6·23-s − 5·25-s − 27-s + 2·29-s − 6·31-s + 4·33-s − 12·37-s − 4·39-s − 2·41-s − 4·43-s + 10·47-s − 2·51-s − 6·53-s − 57-s + 12·59-s − 2·61-s + 8·67-s + 6·69-s − 8·71-s + 2·73-s + 5·75-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 1.20·11-s + 1.10·13-s + 0.485·17-s + 0.229·19-s − 1.25·23-s − 25-s − 0.192·27-s + 0.371·29-s − 1.07·31-s + 0.696·33-s − 1.97·37-s − 0.640·39-s − 0.312·41-s − 0.609·43-s + 1.45·47-s − 0.280·51-s − 0.824·53-s − 0.132·57-s + 1.56·59-s − 0.256·61-s + 0.977·67-s + 0.722·69-s − 0.949·71-s + 0.234·73-s + 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 12 T + p T^{2} \) 1.37.m
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.45747607584295, −12.83046251347308, −12.48117225425723, −11.98508172673626, −11.51353455087903, −11.06525475496086, −10.46458797534281, −10.27316579916380, −9.765957505993618, −9.137849938013737, −8.491483644249331, −8.182517542175901, −7.605451171392957, −7.172253721540431, −6.546125095704613, −6.011820435049564, −5.413154400838714, −5.370943413063020, −4.544744014199003, −3.769055289918347, −3.615818453820018, −2.790316234516145, −1.995472858521880, −1.613688223429531, −0.6727712430544866, 0, 0.6727712430544866, 1.613688223429531, 1.995472858521880, 2.790316234516145, 3.615818453820018, 3.769055289918347, 4.544744014199003, 5.370943413063020, 5.413154400838714, 6.011820435049564, 6.546125095704613, 7.172253721540431, 7.605451171392957, 8.182517542175901, 8.491483644249331, 9.137849938013737, 9.765957505993618, 10.27316579916380, 10.46458797534281, 11.06525475496086, 11.51353455087903, 11.98508172673626, 12.48117225425723, 12.83046251347308, 13.45747607584295

Graph of the $Z$-function along the critical line