Properties

Label 2-17856-1.1-c1-0-29
Degree $2$
Conductor $17856$
Sign $-1$
Analytic cond. $142.580$
Root an. cond. $11.9407$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s − 2·13-s + 4·19-s + 4·23-s − 25-s − 31-s + 8·35-s + 2·37-s − 2·41-s − 12·43-s − 10·47-s + 9·49-s + 8·53-s + 14·59-s + 2·61-s + 4·65-s − 4·67-s + 6·71-s + 6·73-s + 16·83-s − 4·89-s + 8·91-s − 8·95-s − 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s − 0.554·13-s + 0.917·19-s + 0.834·23-s − 1/5·25-s − 0.179·31-s + 1.35·35-s + 0.328·37-s − 0.312·41-s − 1.82·43-s − 1.45·47-s + 9/7·49-s + 1.09·53-s + 1.82·59-s + 0.256·61-s + 0.496·65-s − 0.488·67-s + 0.712·71-s + 0.702·73-s + 1.75·83-s − 0.423·89-s + 0.838·91-s − 0.820·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17856 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17856\)    =    \(2^{6} \cdot 3^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(142.580\)
Root analytic conductor: \(11.9407\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17856,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
31 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.15171719676577, −15.47615657307051, −15.17504629418115, −14.57328784146833, −13.78205063941318, −13.21551669763687, −12.85167268762541, −12.19649662006642, −11.64192642751285, −11.31012795280651, −10.30980034275442, −9.929212936838786, −9.423070021802047, −8.764310588586740, −8.065778338945997, −7.476637008702057, −6.800369620646159, −6.527828404308517, −5.502570125552049, −5.018428456625688, −4.093446783031433, −3.420357209800297, −3.084685513058756, −2.113788863080806, −0.8367650172161893, 0, 0.8367650172161893, 2.113788863080806, 3.084685513058756, 3.420357209800297, 4.093446783031433, 5.018428456625688, 5.502570125552049, 6.527828404308517, 6.800369620646159, 7.476637008702057, 8.065778338945997, 8.764310588586740, 9.423070021802047, 9.929212936838786, 10.30980034275442, 11.31012795280651, 11.64192642751285, 12.19649662006642, 12.85167268762541, 13.21551669763687, 13.78205063941318, 14.57328784146833, 15.17504629418115, 15.47615657307051, 16.15171719676577

Graph of the $Z$-function along the critical line