Properties

Label 2-17850-1.1-c1-0-1
Degree $2$
Conductor $17850$
Sign $1$
Analytic cond. $142.532$
Root an. cond. $11.9387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 7-s + 8-s + 9-s − 6·11-s − 12-s − 14-s + 16-s − 17-s + 18-s − 6·19-s + 21-s − 6·22-s − 4·23-s − 24-s − 27-s − 28-s − 4·29-s − 8·31-s + 32-s + 6·33-s − 34-s + 36-s − 4·37-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 1.80·11-s − 0.288·12-s − 0.267·14-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 1.37·19-s + 0.218·21-s − 1.27·22-s − 0.834·23-s − 0.204·24-s − 0.192·27-s − 0.188·28-s − 0.742·29-s − 1.43·31-s + 0.176·32-s + 1.04·33-s − 0.171·34-s + 1/6·36-s − 0.657·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(142.532\)
Root analytic conductor: \(11.9387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 17850,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8775865643\)
\(L(\frac12)\) \(\approx\) \(0.8775865643\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.70659443123148, −15.27999934375520, −14.91905356327782, −14.01859382886676, −13.49649279246394, −12.98962371394760, −12.61071960059299, −12.13865104238012, −11.27995141490389, −10.89493922621795, −10.29484983446283, −9.989621685591550, −8.958978677934267, −8.381520723045985, −7.557914530149268, −7.231000882542507, −6.273773559441614, −5.988842934094878, −5.108973576302682, −4.884836889567733, −3.868612892079188, −3.376250129786604, −2.287403435654144, −1.936200986795325, −0.3351632491443430, 0.3351632491443430, 1.936200986795325, 2.287403435654144, 3.376250129786604, 3.868612892079188, 4.884836889567733, 5.108973576302682, 5.988842934094878, 6.273773559441614, 7.231000882542507, 7.557914530149268, 8.381520723045985, 8.958978677934267, 9.989621685591550, 10.29484983446283, 10.89493922621795, 11.27995141490389, 12.13865104238012, 12.61071960059299, 12.98962371394760, 13.49649279246394, 14.01859382886676, 14.91905356327782, 15.27999934375520, 15.70659443123148

Graph of the $Z$-function along the critical line