Properties

Label 2-172800-1.1-c1-0-31
Degree $2$
Conductor $172800$
Sign $-1$
Analytic cond. $1379.81$
Root an. cond. $37.1458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·7-s + 3·11-s − 4·13-s − 4·17-s − 2·29-s − 3·31-s + 8·41-s − 12·43-s − 12·47-s + 2·49-s + 5·53-s + 12·67-s + 12·71-s − 9·73-s − 9·77-s − 12·79-s + 9·83-s + 4·89-s + 12·91-s + 9·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 12·119-s + ⋯
L(s)  = 1  − 1.13·7-s + 0.904·11-s − 1.10·13-s − 0.970·17-s − 0.371·29-s − 0.538·31-s + 1.24·41-s − 1.82·43-s − 1.75·47-s + 2/7·49-s + 0.686·53-s + 1.46·67-s + 1.42·71-s − 1.05·73-s − 1.02·77-s − 1.35·79-s + 0.987·83-s + 0.423·89-s + 1.25·91-s + 0.913·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 1.10·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(172800\)    =    \(2^{8} \cdot 3^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(1379.81\)
Root analytic conductor: \(37.1458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 172800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25721662240711, −12.98595340183477, −12.60837584918685, −11.98433131122787, −11.62121329880104, −11.13908116031824, −10.58223293166860, −9.933421167167229, −9.597626142554660, −9.352114915154169, −8.677085256107362, −8.266299350397039, −7.523844477004327, −7.034325689128872, −6.648690341342947, −6.272682634772265, −5.648315611625166, −4.971849151097069, −4.562888840526325, −3.831205921066911, −3.455284610462865, −2.817233888276475, −2.175464277163508, −1.643220900127772, −0.6407750064018201, 0, 0.6407750064018201, 1.643220900127772, 2.175464277163508, 2.817233888276475, 3.455284610462865, 3.831205921066911, 4.562888840526325, 4.971849151097069, 5.648315611625166, 6.272682634772265, 6.648690341342947, 7.034325689128872, 7.523844477004327, 8.266299350397039, 8.677085256107362, 9.352114915154169, 9.597626142554660, 9.933421167167229, 10.58223293166860, 11.13908116031824, 11.62121329880104, 11.98433131122787, 12.60837584918685, 12.98595340183477, 13.25721662240711

Graph of the $Z$-function along the critical line