Properties

Label 2-169065-1.1-c1-0-37
Degree $2$
Conductor $169065$
Sign $1$
Analytic cond. $1349.99$
Root an. cond. $36.7422$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 5-s + 2·7-s − 3·8-s + 10-s − 4·11-s + 13-s + 2·14-s − 16-s − 8·19-s − 20-s − 4·22-s − 8·23-s + 25-s + 26-s − 2·28-s − 6·29-s + 4·31-s + 5·32-s + 2·35-s − 8·37-s − 8·38-s − 3·40-s − 10·41-s + 4·43-s + 4·44-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.447·5-s + 0.755·7-s − 1.06·8-s + 0.316·10-s − 1.20·11-s + 0.277·13-s + 0.534·14-s − 1/4·16-s − 1.83·19-s − 0.223·20-s − 0.852·22-s − 1.66·23-s + 1/5·25-s + 0.196·26-s − 0.377·28-s − 1.11·29-s + 0.718·31-s + 0.883·32-s + 0.338·35-s − 1.31·37-s − 1.29·38-s − 0.474·40-s − 1.56·41-s + 0.609·43-s + 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169065\)    =    \(3^{2} \cdot 5 \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1349.99\)
Root analytic conductor: \(36.7422\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 169065,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.76412779267614, −13.29982239618508, −12.79234845542069, −12.39476035754940, −12.01673581232869, −11.38595350641822, −10.75722128597189, −10.41897541028961, −10.08477909016587, −9.287800938882044, −8.911503955103048, −8.415421844854563, −7.872864387584783, −7.668772639640817, −6.644521887844549, −6.147268593980035, −5.917892220956907, −5.104981257899925, −4.895851348939740, −4.369226267583554, −3.716524454266480, −3.294696117502094, −2.351458579394375, −2.094366144955035, −1.351484042560131, 0, 0, 1.351484042560131, 2.094366144955035, 2.351458579394375, 3.294696117502094, 3.716524454266480, 4.369226267583554, 4.895851348939740, 5.104981257899925, 5.917892220956907, 6.147268593980035, 6.644521887844549, 7.668772639640817, 7.872864387584783, 8.415421844854563, 8.911503955103048, 9.287800938882044, 10.08477909016587, 10.41897541028961, 10.75722128597189, 11.38595350641822, 12.01673581232869, 12.39476035754940, 12.79234845542069, 13.29982239618508, 13.76412779267614

Graph of the $Z$-function along the critical line