Properties

Label 2-169065-1.1-c1-0-29
Degree $2$
Conductor $169065$
Sign $-1$
Analytic cond. $1349.99$
Root an. cond. $36.7422$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s − 5-s + 2·7-s + 2·10-s + 3·11-s + 13-s − 4·14-s − 4·16-s + 7·19-s − 2·20-s − 6·22-s − 4·23-s + 25-s − 2·26-s + 4·28-s + 29-s − 4·31-s + 8·32-s − 2·35-s + 10·37-s − 14·38-s + 7·41-s − 4·43-s + 6·44-s + 8·46-s + 8·47-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s − 0.447·5-s + 0.755·7-s + 0.632·10-s + 0.904·11-s + 0.277·13-s − 1.06·14-s − 16-s + 1.60·19-s − 0.447·20-s − 1.27·22-s − 0.834·23-s + 1/5·25-s − 0.392·26-s + 0.755·28-s + 0.185·29-s − 0.718·31-s + 1.41·32-s − 0.338·35-s + 1.64·37-s − 2.27·38-s + 1.09·41-s − 0.609·43-s + 0.904·44-s + 1.17·46-s + 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169065\)    =    \(3^{2} \cdot 5 \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1349.99\)
Root analytic conductor: \(36.7422\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 169065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.63335410337222, −12.91504247032322, −12.26993820876474, −11.82304277622489, −11.43972186213247, −11.03571031612680, −10.67933747305480, −9.936194418309777, −9.531407141433049, −9.257508146739846, −8.648584755552768, −8.209951179810545, −7.715329616891715, −7.434975612493064, −6.955323013426861, −6.179051113049193, −5.815873470971920, −5.017001527098035, −4.407764867601170, −4.072715395352682, −3.274598329618160, −2.659682681134051, −1.828340978630944, −1.319040622653269, −0.8861031022081992, 0, 0.8861031022081992, 1.319040622653269, 1.828340978630944, 2.659682681134051, 3.274598329618160, 4.072715395352682, 4.407764867601170, 5.017001527098035, 5.815873470971920, 6.179051113049193, 6.955323013426861, 7.434975612493064, 7.715329616891715, 8.209951179810545, 8.648584755552768, 9.257508146739846, 9.531407141433049, 9.936194418309777, 10.67933747305480, 11.03571031612680, 11.43972186213247, 11.82304277622489, 12.26993820876474, 12.91504247032322, 13.63335410337222

Graph of the $Z$-function along the critical line