Properties

Label 2-167310-1.1-c1-0-141
Degree $2$
Conductor $167310$
Sign $-1$
Analytic cond. $1335.97$
Root an. cond. $36.5510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 3·7-s + 8-s + 10-s + 11-s + 3·14-s + 16-s − 2·17-s + 2·19-s + 20-s + 22-s − 3·23-s + 25-s + 3·28-s − 29-s + 7·31-s + 32-s − 2·34-s + 3·35-s − 2·37-s + 2·38-s + 40-s − 5·41-s + 11·43-s + 44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 1.13·7-s + 0.353·8-s + 0.316·10-s + 0.301·11-s + 0.801·14-s + 1/4·16-s − 0.485·17-s + 0.458·19-s + 0.223·20-s + 0.213·22-s − 0.625·23-s + 1/5·25-s + 0.566·28-s − 0.185·29-s + 1.25·31-s + 0.176·32-s − 0.342·34-s + 0.507·35-s − 0.328·37-s + 0.324·38-s + 0.158·40-s − 0.780·41-s + 1.67·43-s + 0.150·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(167310\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1335.97\)
Root analytic conductor: \(36.5510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 167310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.54223584174045, −13.11123506542325, −12.48068593930894, −12.05509786293058, −11.66851467614950, −11.06092541325689, −10.89869641015223, −10.20097762631866, −9.656290475342230, −9.292412442819183, −8.504533086192322, −8.146281658533175, −7.710520542287476, −7.089934644031375, −6.409513407508181, −6.265748154375243, −5.374622114136383, −5.147824070796210, −4.522755391210730, −4.130756627366123, −3.443203920642577, −2.765297309647260, −2.243633309044562, −1.537444116534395, −1.194535679140023, 0, 1.194535679140023, 1.537444116534395, 2.243633309044562, 2.765297309647260, 3.443203920642577, 4.130756627366123, 4.522755391210730, 5.147824070796210, 5.374622114136383, 6.265748154375243, 6.409513407508181, 7.089934644031375, 7.710520542287476, 8.146281658533175, 8.504533086192322, 9.292412442819183, 9.656290475342230, 10.20097762631866, 10.89869641015223, 11.06092541325689, 11.66851467614950, 12.05509786293058, 12.48068593930894, 13.11123506542325, 13.54223584174045

Graph of the $Z$-function along the critical line