Properties

Label 2-167310-1.1-c1-0-116
Degree $2$
Conductor $167310$
Sign $-1$
Analytic cond. $1335.97$
Root an. cond. $36.5510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 2·7-s + 8-s − 10-s − 11-s + 2·14-s + 16-s + 2·17-s − 20-s − 22-s − 8·23-s + 25-s + 2·28-s + 8·29-s − 6·31-s + 32-s + 2·34-s − 2·35-s − 40-s + 10·41-s − 8·43-s − 44-s − 8·46-s − 3·49-s + 50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.755·7-s + 0.353·8-s − 0.316·10-s − 0.301·11-s + 0.534·14-s + 1/4·16-s + 0.485·17-s − 0.223·20-s − 0.213·22-s − 1.66·23-s + 1/5·25-s + 0.377·28-s + 1.48·29-s − 1.07·31-s + 0.176·32-s + 0.342·34-s − 0.338·35-s − 0.158·40-s + 1.56·41-s − 1.21·43-s − 0.150·44-s − 1.17·46-s − 3/7·49-s + 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(167310\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1335.97\)
Root analytic conductor: \(36.5510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 167310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53167026893541, −12.94769795247677, −12.46371718203891, −12.11110369476223, −11.63141396985808, −11.26550747033980, −10.69938241720083, −10.23393423121506, −9.861709458953808, −9.068161423641625, −8.594703404079580, −7.914307236157718, −7.784144996940682, −7.257663840572081, −6.488092157584274, −6.114866441742409, −5.542506225772711, −4.973556609381825, −4.541547408830375, −4.048807118823869, −3.455607634069261, −2.916815228403990, −2.197709732348468, −1.686105965128623, −0.9286670414929944, 0, 0.9286670414929944, 1.686105965128623, 2.197709732348468, 2.916815228403990, 3.455607634069261, 4.048807118823869, 4.541547408830375, 4.973556609381825, 5.542506225772711, 6.114866441742409, 6.488092157584274, 7.257663840572081, 7.784144996940682, 7.914307236157718, 8.594703404079580, 9.068161423641625, 9.861709458953808, 10.23393423121506, 10.69938241720083, 11.26550747033980, 11.63141396985808, 12.11110369476223, 12.46371718203891, 12.94769795247677, 13.53167026893541

Graph of the $Z$-function along the critical line