Properties

Label 2-167310-1.1-c1-0-101
Degree $2$
Conductor $167310$
Sign $-1$
Analytic cond. $1335.97$
Root an. cond. $36.5510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s − 2·7-s + 8-s + 10-s + 11-s − 2·14-s + 16-s − 2·17-s + 2·19-s + 20-s + 22-s + 2·23-s + 25-s − 2·28-s − 6·29-s − 8·31-s + 32-s − 2·34-s − 2·35-s − 4·37-s + 2·38-s + 40-s − 6·41-s + 44-s + 2·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.755·7-s + 0.353·8-s + 0.316·10-s + 0.301·11-s − 0.534·14-s + 1/4·16-s − 0.485·17-s + 0.458·19-s + 0.223·20-s + 0.213·22-s + 0.417·23-s + 1/5·25-s − 0.377·28-s − 1.11·29-s − 1.43·31-s + 0.176·32-s − 0.342·34-s − 0.338·35-s − 0.657·37-s + 0.324·38-s + 0.158·40-s − 0.937·41-s + 0.150·44-s + 0.294·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(167310\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1335.97\)
Root analytic conductor: \(36.5510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 167310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.38418318848576, −13.10151714069483, −12.59346142963064, −12.24343830561967, −11.48824108414824, −11.27539928111987, −10.69738496585439, −10.13548380753307, −9.687465315776420, −9.228935971692943, −8.782903965280454, −8.168052358273222, −7.454771925255716, −7.014388944761002, −6.630577114320305, −6.124254129050464, −5.498491853564711, −5.188338193014541, −4.592095680263396, −3.755581656064057, −3.519056622707745, −2.976970488501989, −2.073491674969236, −1.855154009164683, −0.8848283469183790, 0, 0.8848283469183790, 1.855154009164683, 2.073491674969236, 2.976970488501989, 3.519056622707745, 3.755581656064057, 4.592095680263396, 5.188338193014541, 5.498491853564711, 6.124254129050464, 6.630577114320305, 7.014388944761002, 7.454771925255716, 8.168052358273222, 8.782903965280454, 9.228935971692943, 9.687465315776420, 10.13548380753307, 10.69738496585439, 11.27539928111987, 11.48824108414824, 12.24343830561967, 12.59346142963064, 13.10151714069483, 13.38418318848576

Graph of the $Z$-function along the critical line