Properties

Label 2-162288-1.1-c1-0-118
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 2·11-s + 5·13-s − 4·17-s + 6·19-s + 23-s + 4·25-s − 29-s − 4·31-s + 37-s + 41-s − 43-s + 9·47-s + 6·53-s − 6·55-s − 8·59-s + 12·61-s − 15·65-s + 16·67-s + 10·73-s − 6·79-s − 12·83-s + 12·85-s − 4·89-s − 18·95-s + 3·97-s + 101-s + ⋯
L(s)  = 1  − 1.34·5-s + 0.603·11-s + 1.38·13-s − 0.970·17-s + 1.37·19-s + 0.208·23-s + 4/5·25-s − 0.185·29-s − 0.718·31-s + 0.164·37-s + 0.156·41-s − 0.152·43-s + 1.31·47-s + 0.824·53-s − 0.809·55-s − 1.04·59-s + 1.53·61-s − 1.86·65-s + 1.95·67-s + 1.17·73-s − 0.675·79-s − 1.31·83-s + 1.30·85-s − 0.423·89-s − 1.84·95-s + 0.304·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - T + p T^{2} \) 1.41.ab
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.57761076456110, −13.00639515339227, −12.46864681129718, −12.02894372602768, −11.49622988681797, −11.18272391325445, −10.93773221841781, −10.25734336581430, −9.482939673185785, −9.221751627378400, −8.544170509708215, −8.303846155923947, −7.709294169398561, −7.112199032214008, −6.866978919097034, −6.196952116239516, −5.568915711039244, −5.116937755511786, −4.310660294648778, −3.832668338657279, −3.696575154167999, −2.930279289194157, −2.239070270313649, −1.307359819092299, −0.8736235140987493, 0, 0.8736235140987493, 1.307359819092299, 2.239070270313649, 2.930279289194157, 3.696575154167999, 3.832668338657279, 4.310660294648778, 5.116937755511786, 5.568915711039244, 6.196952116239516, 6.866978919097034, 7.112199032214008, 7.709294169398561, 8.303846155923947, 8.544170509708215, 9.221751627378400, 9.482939673185785, 10.25734336581430, 10.93773221841781, 11.18272391325445, 11.49622988681797, 12.02894372602768, 12.46864681129718, 13.00639515339227, 13.57761076456110

Graph of the $Z$-function along the critical line