Properties

Label 2-162288-1.1-c1-0-108
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·17-s − 4·19-s + 23-s − 25-s + 10·29-s + 6·31-s + 2·37-s + 4·43-s + 6·47-s + 2·53-s + 2·59-s − 2·61-s − 8·71-s + 4·73-s − 4·79-s − 4·85-s − 6·89-s + 8·95-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s − 2·115-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.485·17-s − 0.917·19-s + 0.208·23-s − 1/5·25-s + 1.85·29-s + 1.07·31-s + 0.328·37-s + 0.609·43-s + 0.875·47-s + 0.274·53-s + 0.260·59-s − 0.256·61-s − 0.949·71-s + 0.468·73-s − 0.450·79-s − 0.433·85-s − 0.635·89-s + 0.820·95-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 0.186·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53819739624580, −12.98198223092430, −12.41018573993430, −12.02734666489040, −11.79606057190416, −11.09788060709296, −10.67928779234693, −10.23002952565339, −9.756575623460383, −9.112394863035090, −8.605476347876071, −8.081537594620309, −7.913956142937953, −7.112016104843519, −6.789189704911103, −6.141489601260641, −5.700574809270147, −4.960911064489536, −4.389109439293550, −4.126026839056667, −3.434824027830025, −2.761062352652501, −2.392319025215966, −1.371023632255332, −0.8101683502741158, 0, 0.8101683502741158, 1.371023632255332, 2.392319025215966, 2.761062352652501, 3.434824027830025, 4.126026839056667, 4.389109439293550, 4.960911064489536, 5.700574809270147, 6.141489601260641, 6.789189704911103, 7.112016104843519, 7.913956142937953, 8.081537594620309, 8.605476347876071, 9.112394863035090, 9.756575623460383, 10.23002952565339, 10.67928779234693, 11.09788060709296, 11.79606057190416, 12.02734666489040, 12.41018573993430, 12.98198223092430, 13.53819739624580

Graph of the $Z$-function along the critical line