Properties

Label 2-15730-1.1-c1-0-0
Degree $2$
Conductor $15730$
Sign $1$
Analytic cond. $125.604$
Root an. cond. $11.2073$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 7-s − 8-s − 2·9-s + 10-s − 12-s − 13-s + 14-s + 15-s + 16-s + 5·17-s + 2·18-s + 3·19-s − 20-s + 21-s − 4·23-s + 24-s + 25-s + 26-s + 5·27-s − 28-s − 29-s − 30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s − 2/3·9-s + 0.316·10-s − 0.288·12-s − 0.277·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s + 1.21·17-s + 0.471·18-s + 0.688·19-s − 0.223·20-s + 0.218·21-s − 0.834·23-s + 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.962·27-s − 0.188·28-s − 0.185·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15730\)    =    \(2 \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(125.604\)
Root analytic conductor: \(11.2073\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 15730,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5204867673\)
\(L(\frac12)\) \(\approx\) \(0.5204867673\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + T + p T^{2} \) 1.7.b
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.22718901791375, −15.60623114409000, −15.00611338204830, −14.31155800998380, −13.96543162271855, −13.07117377023394, −12.30306757726615, −12.01324460920014, −11.55960819366864, −10.85544516588223, −10.35250861747786, −9.754719174321908, −9.234739870456851, −8.399685209010341, −8.058050940662685, −7.258749825929194, −6.822962247191501, −5.966152859421078, −5.497733455013422, −4.882819347885195, −3.707172999912878, −3.281521397449646, −2.382781200583377, −1.354343969115436, −0.3784231093905544, 0.3784231093905544, 1.354343969115436, 2.382781200583377, 3.281521397449646, 3.707172999912878, 4.882819347885195, 5.497733455013422, 5.966152859421078, 6.822962247191501, 7.258749825929194, 8.058050940662685, 8.399685209010341, 9.234739870456851, 9.754719174321908, 10.35250861747786, 10.85544516588223, 11.55960819366864, 12.01324460920014, 12.30306757726615, 13.07117377023394, 13.96543162271855, 14.31155800998380, 15.00611338204830, 15.60623114409000, 16.22718901791375

Graph of the $Z$-function along the critical line